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Abstract—World modeling has become a cornerstone in AI research, enabling agents to understand, represent, and predict the dynamic
environments they inhabit. While prior work largely emphasizes generative methods for 2D image and video data, they overlook the
rapidly growing body of work that leverages native 3D and 4D representations such as RGB-D imagery, occupancy grids, and LiDAR
point clouds for large-scale scene modeling. At the same time, the absence of a standardized definition and taxonomy for “world models”
has led to fragmented and sometimes inconsistent claims in the literature. This survey addresses these gaps by presenting the first
comprehensive review explicitly dedicated to 3D and 4D world modeling and generation. We establish precise definitions, introduce a
structured taxonomy spanning video-based (VideoGen), occupancy-based (OccGen), and LiDAR-based (LiDARGen) approaches, and
systematically summarize datasets and evaluation metrics tailored to 3D/4D settings. We further discuss practical applications, identify
open challenges, and highlight promising research directions, aiming to provide a coherent and foundational reference for advancing the
field. A systematic summary of existing literature is available at https://github.com/worldbench/survey.
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1 INTRODUCTION

World modeling has emerged as a fundamental task in AI and
robotics, aiming towards the ability to understand, represent,
and anticipate the dynamic environments they inhabit [1], [2],
[3]. Recent advancements in generative modeling techniques,
including VAEs, GANs, diffusion models, and autoregressive
models, have significantly enriched the field by enabling
sophisticated generation and prediction capabilities [4], [5].

Much of this progress, however, has been centered on
2D data, primarily images or videos [6], [7], [8]. Real-
world scenarios, in contrast, are inherently in 3D space and
dynamic, often requiring models that leverage native 3D and
4D representations. These include RGB-D imagery [9], [10],
[11], occupancy grids [12], [13], [14], and LiDAR point clouds
[15], [16], [17], as well as their sequential forms that capture
temporal dynamics [18], [19]. These modalities offer explicit
geometry and physical grounding, which are indispensable
for embodied and safety-critical systems such as autonomous
driving and robotics [20], [21], [22], [23], [24], [25], [26].

Beyond these native formats, world modeling has also
been explored in adjacent domains [27], [28], [29]. Some
works address video, panoramic, or mesh-based data, with
systems of this kind providing large-scale, general-purpose
video-mesh generation capabilities [30], [31]. In parallel,
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another line of research focuses on 3D object generation
for asset creation, which specializes in controllable and high-
fidelity object synthesis [32], [33], [34]. Meanwhile, industrial
projects from leading companies have launched ambitious
world modeling initiatives that target practical applications
ranging from interactive robotics and immersive simulation
to large-scale digital twins [35], [36], [37], [38], [39], [40],
underscoring the growing importance of this field in both
academia and industry.

Despite this momentum, the term “world model” itself
remains ambiguous, with inconsistent usage across the
literature [27], [41], [42]. Some works narrowly interpret
it as generative models for sensory data (e.g., images and
videos), while others broaden the scope to include predictive
forecasting, simulators, and decision-making frameworks
[43], [44], [45], [46], [47]. Moreover, existing surveys largely
emphasize 2D or vision-only modalities [6], [48], leaving the
unique challenges and opportunities of native 3D and 4D
data underexplored. This has led to a fragmented body of
literature lacking a unified framework or taxonomy.

• Why native 3D and 4D matters? Unlike 2D projections,
native 3D/4D signals encode metric geometry, visibility,
and motion in the coordinates where physics acts [18],
[49]. This makes them first-class carriers of constraints
needed for actionable modeling: multi-view and egocentric
consistency, rigid-body and non-rigid kinematics, scene-
scale occlusion reasoning, and map/topology adherence.
In safety-critical settings, agents must not only produce
photorealistic frames but also obey geometry, causality, and
controllability; RGB-D, occupancy, and LiDAR provide
the inductive bias to satisfy these requirements. Sec. 2
will formalize these representations and the conditioning
signals (Cgeo, Cact, Csem) we use throughout the survey.

• Position in the broader landscape. The adjacent lines –
video/panorama/mesh world models [30], [31] and object-
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Fig. 1: Outline of the survey. This work focuses on native 3D and 4D representations: video streams, occupancy grids, and
LiDAR point clouds, guided by geometric (Cgeo), action-based (Cact), and semantic (Csem) conditions (Sec. 2). Methods are
framed under two paradigms, generative (synthesis from observations and conditions) and predictive (forecasting from history
and actions), and grouped into four functional types (Sec. 3). We cover three modality tracks and standardize evaluations
(Sec. 4), applications (Sec. 5), and future trends (Sec. 6) across diverse generation, forecasting, and downstream tasks.

centric 3D asset generators [32], [33], [34] – are complemen-
tary: they supply appearance, topology, and assets, while
native 3D/4D world models supply geometry-grounded
dynamics and interaction [19], [50]. Practical systems
increasingly compose these capabilities: mesh/panorama
worlds initialized from assets, then driven by occupancy-
or LiDAR-based dynamics, or video models constrained
by 3D priors for view and motion correctness. Our scope
centers on the latter – native 3D/4D – while acknowledging
and cross-referencing where cross-pollination occurs.

• From conditions to functions. A common pain point in the
field is conflating “what the model consumes” (conditions)
with “what the model does” (function). We therefore separate
the roles of geometry/action/semantics conditions (Ta-
ble 1) from functional types. Sec. 3 organizes methods by
representation modality –VideoGen, OccGen, LiDARGen
– and then by four functional roles: 1Data Engines (diverse
scene synthesis under Cgeo, Csem, Cact), 2Action Interpreters
(forecasting under Cact with history), 3Neural Simulators
(closed-loop rollouts with policy-in-the-loop), and 4Scene
Reconstructors (completion/retargeting from partial 3D/4D
observations). This decoupling lets us compare heteroge-
neous methods on common axes of fidelity, consistency,
controllability, and scalability.

Contributions. To address the aforementioned gaps, this
survey presents the first comprehensive review specifically
dedicated to 3D and 4D world modeling and generation.
The primary contributions of this survey are threefold:

• We establish precise definitions for “world models” and
“3D/4D world modeling”, providing the research commu-
nity with consistent terminology and conceptual clarity.

• We propose a hierarchical taxonomy of methodologies, cat-
egorizing current approaches based on their representation
modalities – namely, world modeling based on VideoGen,
OccGen, and LiDARGen models.

• We provide extensive coverage of datasets and evaluation
protocols specifically tailored for 3D and 4D scenarios,
enabling a thorough benchmarking of existing and future
world modeling and generation approaches.

Scope. Distinct from previous surveys, which predominantly
focus on 2D generative models [48], [51], [52] or broadly
define world modeling within limited contexts [53], [54], [55],
[56], [57], this survey explicitly targets methodologies that
utilize native 3D and 4D representations. This specialized
focus includes approaches leveraging RGB-D, volumetric
occupancy grids, LiDAR point clouds, and their spatiotem-
poral forms. By highlighting these modalities, our survey
not only fills a critical knowledge gap but also serves as
a foundational reference for researchers aiming to develop
robust and generalizable 3D/4D generative models.
Organization. The remainder of this survey is organized as
follows. Sec. 2 provides preliminaries, detailing fundamental
concepts, definitions, and key generative paradigms relevant
to world modeling. Sec. 3 introduces a new and hierarchical
taxonomy, detailing VideoGen, OccGen, and LiDARGen
methodologies, providing comparative analyses and insights
into their respective strengths and limitations. Sec. 4 system-
atically summarizes and categorizes widely used datasets
and evaluation metrics critical for world modeling tasks,
as well as benchmarking recent methods in this related
area. Sec. 5 reviews practical applications of 3D and 4D
world models across autonomous driving, robotics, and
simulation environments. Sec. 6 discusses major challenges
and highlights promising future research directions, paving
the way for continued innovation in the field. Finally, Sec. 7
concludes the key discussions drawn in this survey.

2 PRELIMINARIES

In this section, we define critical concepts and establish uni-
fied mathematical notations essential for understanding 3D
and 4D world modeling. This includes detailed descriptions
of the key representations, definitions of generative and
predictive world models, and model categorizations.

2.1 3D and 4D Representations
To systematically analyze 3D/4D world models, we first
introduce the fundamental scene representations that serve
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Fig. 2: Summary of representative video-based generation (VideoGen), occupancy-based generation (OccGen), and LiDAR-
based generation (LiDARGen) models from existing literature. For the complete list of related methods and discussions on
their specifications, configurations, and technical details, kindly refer to Sec. 3.1, Sec. 3.2, and Sec. 3.3, respectively.

as inputs, outputs, or intermediate states in generation and
prediction. These representations differ in how they capture
spatial geometry, temporal dynamics, and semantic context.
Video Streams. A video is denoted as xv ∈ RT×H×W×C ,
where T is the number of frames, and H , W , C are the frame
height, width, and channels. Unlike conventional 2D videos,
3D/4D modeling emphasizes geometric coherence and temporal
consistency to ensure physically plausible simulations and
accurate forecasting [58], [59], [60].
Occupancy Grids. A static occupancy grid is represented
as xo ∈ {0, 1}X×Y×Z , where each voxel indicates whether
a location is occupied [12], [61]. Sequential occupancy grids
xt
o ∈ {0, 1}T×X×Y×Z extend this into 4D, capturing scene

evolution over time. Such voxelized geometry enforces
spatial constraints, making them well-suited for physics-
consistent scene generation.
LiDAR Point Clouds. A LiDAR-acquired scan is expressed
as xl = {(xi, yi, zi)}Ni=1, where (xi, yi, zi) are the Cartesian
coordinates in 3D space [62]. Sequential LiDAR xt

l =
{(xi, yi, zi, ti)}Nt

i=1 further records the timestamp ti, enabling
precise modeling of motion and interactions [63], [64]. Unlike
RGB images, LiDAR captures geometry directly and remains
robust to texture, lighting, or weather variations [24], [65].
Neural Representations. Implicit scene encodings, such as
neural radiance fields (NeRF) and Gaussian splatting (GS),
model continuous volumetric fields or explicit Gaussian
primitives. NeRF maps a ray origin r and direction d to color
c and density σ, while GS represents the scene as a set of
Gaussians parameterized by position, covariance, and color.
Temporal extensions add dynamic components, enabling

realistic 4D reconstructions and simulations.

2.2 Definition of World Modeling in 3D and 4D

The above scene representations form the structural backbone
of 3D/4D world models. In practice, generating or forecast-
ing them requires additional conditions – auxiliary signals
that constrain spatial structure, describe agent behavior, or
define high-level semantics. As summarized in Table 1, these
conditions are typically grouped into:
• geometric Cgeo: specifying spatial layout such as camera

pose, depth maps, or occupancy volumes;
• action-based Cact: describing ego-vehicle or agent motion

via trajectories, control commands, or navigation goals;
• semantic Csem: providing abstract scene intent such as

textual prompts, scene graphs, or environment attributes.
These signals can be used independently or in combination,
shaping the realism, controllability, and diversity of the
generated or forecasted scenes in 3D and 4D.

2.2.1 Model Definitions
Depending on the modeling objective, 3D/4D world models
generally fall into two complementary paradigms:
Generative World Models focus on synthesizing plausible
scenes from scratch or from partial observations, guided by
multimodal conditions. This process can be formulated as:

G(xi, Cgeo, Cact, Csem) → Sg, (1)

where xi denotes the optional input representation, with
i ∈ {∅, v, o, l}, e.g., noise, partial video, occupancy, or LiDAR
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Fig. 3: Summary of existing datasets and benchmarks used for training and evaluating VideoGen, OccGen, and LiDARGen
models. For detailed dataset configurations and statistics, kindly refer to Table 5. Images adopted from the original papers.

data. Cgeo, Cact, and Csem correspond to the geometric, action,
and semantic conditions. The output Sg is a generated 3D/4D
scene, such as a video sequence, occupancy grid, or LiDAR
sweep sequence.
Predictive World Models instead aim to forecast the future
evolution of the scene based on historical observations, often
under action conditions that describe planned or executed
agent behavior. This process can be formulated as:

P(x−t:0
i , Cact) → S1:k

p , (2)

where x−t:0
i represents observations from the past t steps to

the current step, and Cact encodes agent actions (e.g., control
commands or planned trajectories). The model outputs S1:k

p ,
the predicted scene representations over k future steps.

Together, these two paradigms capture the dual capability
of world models: the ability to imagine diverse and control-
lable worlds (generative), and to anticipate their plausible
future evolution under specific conditions (predictive).

2.2.2 Model Categorizations
Building on the generative and predictive paradigms, exist-
ing approaches can be further divided into four functional
types. They differ in how they utilize historical observations,
the nature of conditioning signals (Cgeo, Cact, Csem), and
whether they operate in an open-loop or closed-loop setting.

Type 1: Data Engines

Generate diverse 3D/4D scenes from geometric and
semantic cues, optionally with action conditions.
• Inputs: Cgeo (geometric cond.), Cact (action cond.,

optional), and Csem (semantic cond.)
• Output: Sg (generated scene)
Focus on plausibility and diversity for large-scale data
augmentation and scenario creation.

Type 2: Action Interpreters

Forecast future 3D/4D world states from historical
observations under given action conditions.
• Inputs: x−t:0

i (historical observations) and Cact
(action cond.)

• Output: S1:k
p (predicted sequence)

Enable action-aware forecasting for trajectory planning,
behavior prediction, and policy evaluation.

Type 3: Neural Simulators

Iteratively simulate closed-loop agent-environment
interactions by generating successive scene states.
• Inputs: St

g (current scene state) and πagent (agent
policy)

• Output: St+1
g (next scene state)

Support interactive simulation for autonomous driving,
robotics, and immersive XR training.

Type 4: Scene Reconstructors

Recover complete and coherent 3D/4D scenes from
partial, sparse, or corrupted observations.
• Inputs: xp

i (partial observations) and Cgeo (optional
geometric cond.)

• Output: Ŝg (completed scene)
Facilitate interactive tasks on high-fidelity mapping,
digital twin restoration, and post-event analysis.

Together, these four categories outline the functional
landscape of 3D/4D world modeling. While all aim to
produce physically and semantically coherent scenes, they
differ in how they leverage past observations, conditioning
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TABLE 1: Summary of the rich collection of conditions used by existing VideoGen, OccGen, and LiDARGen models. The
conditions are categorized into three main groups: geometric conditions, action-based conditions, and semantic conditions.
The tasks are video generation (Sec. 3.1), occupancy generation (Sec. 3.2), and LiDAR generation (Sec. 3.3).

Group Condition Definition Task

Geometry C Camera Pose Position and orientation of the camera in world coordinates, controlling viewpoint
(Cgeo) D Depth Map Per-pixel depth values providing scene geometry constraints

B BEV Map Bird’s-eye-view geometric representation of the scene
H HD Map High-resolution semantic map with detailed road layout and traffic elements
3 3D Bounding Box Object bounding boxes in 3D, defining positions, sizes, and orientations of objects
F Flow Field Optical or scene flow encoding per-pixel or per-point motion between frames
P Past Occupancy Historical occupancy grids or voxel maps capturing prior scene geometry
L LiDAR Pattern Sensor scan configuration including beam count, FOV, and resolution
O Object Coordinate Set of Cartesian coordinates of instances from LiDAR point clouds
P Partial Point Cloud Incomplete LiDAR point set capturing only a subset of the full 3D scene geometry
R RGB Frame Single color image frame from a monocular or multi-camera setup
S Surface Mesh Triangular mesh or equivalent explicit geometry representation of the scene

Action T Ego-Trajectory The planned or recorded path of the ego vehicle over time
(Cact) V Ego-Velocity The speed and direction of the ego movement

A Ego-Acceleration Rate of change of ego velocity, describing linear acceleration or deceleration
S Ego-Steering The steering angle or input controlling the ego direction
C Ego-Command The control instructions given to the ego vehicle
R Route Plan High-level navigation path through the environment, often from a planner
A Action Token Encoded discrete actions or instructions influencing scene evolution
S Scan Path Predefined movement or sweep pattern during LiDAR acquisition

Semantics S Semantic Mask Pixel-/occupancy-/point-wise semantic categories
(Csem) T Text Prompt Natural language input specifying scene attributes, objects, or actions

G Scene Graph Graph representation of scene entities and their spatial/semantic relationships
O Object Label Class category annotation assigned to an object instance in the scene
W Weather Tag Discrete label describing environmental conditions such as sunny, rainy, or foggy
M Material Tag Classification of surface materials influencing appearance or LiDAR reflectance

signals, and interaction loops – serving applications ranging
from large-scale data synthesis and policy evaluation to
interactive simulation and scene restoration.

2.3 Generative Models

Generative models form the algorithmic core of 3D/4D world
modeling, enabling agents to learn, imagine, and forecast
sensory data under diverse conditions. They provide the
mechanisms to synthesize realistic and physically plausible
scenes, with different paradigms offering distinct trade-offs
in quality, controllability, and efficiency. Representative fami-
lies include variational autoencoders, generative adversarial
networks, diffusion models, and autoregressive models.
Variational Autoencoders (VAEs) [66] learn a structured
latent space via probabilistic encoding and decoding. Given
input x, the encoder defines a variational posterior qϕ(z|x) =
N (µϕ(x), diag(σ

2
ϕ(x))) and samples z using the reparame-

terization trick: z = µϕ(x) + σϕ(x)⊙ ϵ, where ϵ ∼ N (0, I).
The decoder pθ(x|z) reconstructs the input, and the model
is trained to maximize the variational lower bound that
balances reconstruction fidelity and latent regularization:

log pθ(x) ≥ Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x) ∥ p(z)).
(3)

VAEs offer stable training and interpretable latent spaces, but
may produce blurrier samples compared to other paradigms.
Generative Adversarial Networks (GANs) [67] generate
data via a min–max game between a generator Gθ and dis-
criminator Dϕ. The generator maps latent variables z ∼ p(z)

to the data space, aiming to fool Dϕ, while the discriminator
distinguishes real from synthetic samples:

min
G

max
D

Ex∼pdata [logD(x)]+Ez∼p(z)[log(1−D(G(z)))]. (4)

GANs can produce high-fidelity result samples but often
suffer from training instability and mode collapse issues.
Diffusion Models (DMs) [68], [69] learn to reverse a gradual
noising process. The forward process corrupts x0 into
{x1, . . . ,xT } via q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI),

where βt follows a variance schedule. The reverse process
pθ(xt−1|xt) is trained to denoise, minimizing:

Ex,ϵ,t[∥ϵ− ϵθ(xt, t)∥2]. (5)

DMs provide strong stability and sample quality, though
inference can be slow due to iterative sampling.
Autoregressive Models (ARs) [70], [71] factorize the joint
distribution as p(x) =

∏n
i=1 p(xi | x<i), predicting each

element conditioned on all previous ones. Transformer-based
ARs offer exact likelihood estimation and flexible sequence
modeling, but suffer from slow generation since samples are
produced sequentially. Recent advances have adapted ARs
to spatial and temporal tokens, making them well-suited for
structured 3D scene generation and forecasting.
Summary. These paradigms form the algorithmic backbone
for world models. Their differences in structure, training
stability, and inference efficiency directly shape how 3D
environments can be synthesized, forecasted, and controlled.
As we move into native 3D/4D domains, these trade-offs are
magnified, since scalability, controllability, and multi-modal
integration are critical to constructing reliable world models
for embodied AI and simulation.
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3 METHODS: A HIERARCHICAL TAXONOMY

In this section, we standardize and categorize existing 3D and
4D world modeling approaches based on their representation
modalities. This includes descriptions and discussions of
world modeling based on Video Generation (Sec. 3.1),
Occupancy Generation (Sec. 3.2), and LiDAR Generation
(Sec. 3.3) models, respectively.

3.1 World Modeling from Video Generation
Video-based generation has emerged as a new paradigm, of-
fering visual cues and temporal dynamics to model complex
real-world scenarios. By generating multi-view or egocentric
video sequences, these models can synthesize training data,
predict future outcomes, and create interactive simulation
environments. Based on their primary function, existing
methods can be grouped into three categories: Data
Engines, Action Interpreters, and Neural Simulators.
Table 2 summarizes existing models under these domains.

3.1.1 Data Engines
Generative 3D data engines focus on generating diverse and
controllable driving scenes to support perception, planning,
and simulation [20], [72], [73], [74], [75], [76], [77], [78].
Research in this direction covers three major applications.
Perception Data Augmentation. Generative scene synthesis
alleviates real-world data scarcity and addresses long-tail
perception challenges. Early work focused on BEV-guided
realistic street scenes. BEVGen [72] uses an autoregres-
sive transformer and cross-view transformation to produce
spatially consistent surrounding images aligned with a
given BEV layout. BEVControl [73] centers on diffusion
models to boost the quality of synthetic data, particularly for
augmenting challenging long-tail scenarios. Subsequently,
MagicDrive [20] made significant progress in driving scene
generation and data augmentation, combining 3D geometry
and semantic descriptions, and camera poses to generate
high-fidelity images. Later work introduced finer condi-
tioning. For instance, SyntheOcc [75] uses 3D semantic
multi-plane images for comprehensive, spatially aligned
conditioning, and PerLDiff [79] proposes perspective-layout
diffusion models that fully leverage perspective 3D geometry
to enhance realism and consistency. On the other hand,
approaches such as Panacea [80], DrivingDiffusion [81], and
SubjectDrive [82] introduce 4D attention, keyframes, and
subject control to improve the temporal consistency and data
diversity of 3D controllable multi-view videos. NoiseCon-
troller [78] proposes multi-level noise decomposition and
multi-frame collaborative denoising to enhance spatiotem-
poral coherence. For long-horizon video generation, DiVE
[76], MagicDrive-V2 [74], and Cosmos-Drive [35] leverage
the flexibility and scalability of DiT to produce longer videos.
Glad [83] uses latent-variable propagation, and STAGE [84]
uses hierarchical temporal feature transfer to generate long
videos in a streaming fashion. Others like UniScene [77]
and BEVWorld [85] explore multi-modal data synthesis to
broaden applications, supporting downstream perception
tasks that leverage information from multiple modalities.
These advances enable robust, scalable autonomous driving
perception systems by delivering diverse, controllable, and
long-horizon training data that capture real-world variability.
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Fig. 4: The categorization of VideoGen models based on
functionalities, including data engines (Sec. 3.1.1), action
interpreters (Sec. 3.1.2), and neural simulators (Sec. 3.1.3).

Planning-Oriented Data Mining. Beyond perception, data
engines also mine rare and safety-critical scenarios for
planning. Delphi [86] employed a diffusion-based long video
generation framework and a failure-case-driven approach
utilizing pre-trained visual language models to synthesize
data similar to failure scenarios, thereby enhancing sam-
ple efficiency and planning performance for end-to-end
autonomous driving systems. DriveDreamer-2 [87] converted
user queries into agent trajectories via a large language
model, which are then used to produce traffic-compliant
HDMaps for corner case generation. Nexus [88] simulated
both regular and challenging scenarios from fine-grained
tokens with independent noise states to improve reactivity
and goal conditioning and collected a specialized corner-
case dataset to complement challenging scenario generation,
Challenger [89] exploited a physics-aware multi-round tra-
jectory refinement to identify adversarial maneuvers and a
tailored scoring function to promote realistic yet challenging
behaviors compatible with downstream video synthesis.
Scene Editing & Style Transfer. Many existing methods
[80], [90], [91] also take world models for scene editing and
style transfer to enrich the toolkit for autonomous driving
simulation and data augmentation. Early methods primarily
utilized scene descriptions [20] or reference images [92] for
basic appearance modifications (e.g., weather, lighting) and
relied on bounding boxes or HD maps [73] for element-
level adjustments. However, newer approaches explore
richer representations for precise scene manipulation and
diverse appearance control. WoVoGen [90] ensures cross-
sensor consistency through world volume-aware synthe-
sis, while SyntheOcc [75] employs occupancy grids for
occlusion-aware scene editing. SimGen [91] bridges sim-to-
real gaps via simulator-conditioned cascade diffusion, and
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DrivePhysica [93] simulates complex driving scenarios (e.g.,
cut-ins) using CARLA and introduces motion representation
learning and instance flow guidance for temporal consistency.
Complementing these, GeoDrive [94] integrates explicit
3D geometry conditions and dynamic editing to enable
interactive trajectory and object manipulation.

3.1.2 Action Interpreters
Action-driven generation models bridge agent intentions
and environmental dynamics through action-guided world
generation and forecast-driven action planning, enabling
outcome anticipation and unifying low-level maneuvers and
reasoning by mapping controls to plausible futures.
Action-Guided Video Generation. Action-conditioned gen-
eration models empower agents to predict future outcomes
based on intended maneuvers, effectively bridging low-level
control inputs with high-fidelity video rollouts of plausible
futures. GAIA-1 [60] pioneered a generative model that
fuses video, text, and action inputs to synthesize realistic
driving scenarios with detailed control over ego-vehicle
behavior and scene attributes. GAIA-2 [126] expanded this
framework to include agent configurations, environmental
factors, and road semantics. GenAD [96] further enhanced
generalization by releasing the OpenDV dataset alongside
a predictive model that supports zero-shot, language- and
action-conditioned predictions. Vista [103] applies robust ac-
tion conditioning across diverse scenarios, while GEM [116]
delivers multimodal outputs with precise ego-motion con-
trol, and MaskGWM [117] boosts fidelity and long-horizon
predictions using mask-based diffusion. To address error
accumulation in long video synthesis, InfinityDrive [107]
and Epona [59] proposed memory injection and a chain-of-
forward training strategy, respectively. In addition, Driving-
World [112] generates scenarios from predefined trajectories,
functioning as a neural driving simulator. Other approaches,
such as DriVerse [128], MiLA [125], PosePilot [129], and
LongDWM [131], focus on trajectory alignment, temporal
stability, pose controllability, and depth-free guidance. Col-
lectively, these advances drive action-conditioned generation
toward better precision, temporal coherence, and robustness.
Forecasting-Driven Action Planning. Another line of work
forecasts future states from current observations and ego
actions, letting planners evaluate outcomes before com-
mitting [132], [133], [134]. Different from purely reactive
schemes, these approaches emphasize anticipatory decision-
making, allowing the agent to virtually “test” multiple futures
and avoid unsafe trial-and-error in the real world. Drive-
WM [102] generates video rollouts of candidate maneu-
vers, scoring them with image-based rewards for trajectory
selection. DriveDreamer [58] proposed the ActionFormer
to predict future states and ego-environment interactions.
ADriver-I [101] combines multimodal LLMs with autore-
gressive control signals and world evolution prediction.
Vista [103] incorporates uncertainty-aware reward modules
for robust action evaluation. GPT-style designs such as
DrivingGPT [111] and DrivingWorld [112] model visual and
action tokens jointly for planning via next-token prediction.
Integrated frameworks like Doe-1 [109] unify perception, pre-
diction, and planning for closed-loop autonomous driving,
while VaVAM [122] bridges video diffusion and an action
expert for decision-making. ProphetDWM [130] further

couples latent action learning with state forecasting for
long-term planning. Overall, by simulating diverse futures
and leveraging feedback, forecast-driven models enhance
generalization and safety in end-to-end autonomous driving.

3.1.3 Neural Simulators
Closed-loop simulators produce realistic virtual worlds that
support effective planning, decision-making, and interaction.
Regarding the difference in scene modeling, recent methods
can be broadly categorized into two main approaches.
Generation-Driven Simulation. Recent advances in genera-
tive simulators for autonomous driving leverage conditional
generative frameworks [8], [135], [136] to create interactive
high-fidelity environments. DriveArena [119] establishes the
first closed-loop framework through two core components:
TrafficManager for scalable traffic synthesis and World-
Dreamer for autoregressive scene generation. Building on
this foundation, DreamForge [105] enhances long-term sce-
nario modeling by integrating object-wise position encoding,
supported by a novel temporal attention mechanism. Further
extending these capabilities, DrivingSphere [115] introduces
4D semantic occupancy modeling that unifies static environ-
ments and dynamic objects, coupled with a visual synthesis
module ensuring spatiotemporal consistency in multiview
video generation. UMGen [118] simulates behavioral in-
teractions between ego-vehicles and user-defined agents,
while Nexus [88] dynamically updates environments based
on agent decisions, rigorously validated through nuPlan
closed-loop benchmarks. GeoDrive [94] advances trajectory
optimization for VLA systems via geometry-aware scene
modeling and precision control modules. Collectively, these
developments transition generative simulation from passive
environment rendering to closed-loop systems capable of
agent interaction and feedback-driven adaptation.
Reconstruction-Centric Simulation. Reconstruction-based
simulators employ neural scene reconstruction techniques
such as NeRF [137] and 3D GS [138] to convert driving
logs into interactive neural environments [110], [139], [140],
[141], [142], [143], [144], [145], [146], [147], [148], [149],
[150], [151], [152], [153]. StreetGaussian [154] represented
dynamic urban street as a set of point clouds equipped
with semantic logits and 3D Gaussians, each associated with
either a foreground vehicle or the background. Other key
implementations include HUGSIM [155], which integrates
physical constraints with 3D GS for aggressive behavior
synthesis, alongside frameworks like UniSim [77] and Uni-
Gaussians [156] that generate synchronized multi-modal
sensor outputs through Gaussian primitive distillation. Om-
niRe [157] further enhances dynamic entity modeling via
neural scene graph representations. While conventional 3D
GS methods [21], [120], [124], [154], [158] struggle with
viewpoint extrapolation artifacts, emerging solutions inte-
grate 3D scene generation models as the data foundation
to improve reconstruction robustness. ReconDreamer [159]
applies progressive refinement to eliminate ghosting effects
in dynamic scenes, while Stage-1 [160] achieves controllable
4D synthesis through multiview point cloud completion.
These modeling methods enhanced approaches [50], [121],
[159], [161], [162] demonstrate significant improvements in
handling novel viewpoints, effectively bridging the fidelity
gap between simulated and real-world environments.
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TABLE 2: Summary of video-based generation (VideoGen) models.
• Datasets: N nuScenes [10], K KITTI [11], W Waymo Open [95], Y OpenDV-YouTube [96], A Argoverse 2 [97], N nuPlan
[98], N NAVSIM [99], C CARLA [100], and P Private (Internal) Data.

• Input & Output: Noise Latent, Video (Single-View and/or Multi-View), and Ego-Action.
• Architectures (Arch.): AR : Autoregressive Models, MLLM : Multimodal Large Language Models, SD : Stable Diffusion
Models, DiT : Diffusion Transformer, GPT : Generative Pre-trained Transformer.
• Tasks: VG : Video Generation, E2E : End-to-End Planning, and 3SR : 3D Scene Reconstruction.
• Categories: Data Engine (Sec. 3.1.1), Action Interpreter (Sec. 3.1.2), and Neural Simulator (Sec. 3.1.3).

# Model Venue Dataset Input Output Condition Len. Freq. Arch. Task Cat. URL

1 GAIA-1 [60] arXiv’23 P T C T L 25Hz AR VG �

2 ADriver-I [101] arXiv’23 N P T S 2Hz MLLM VG �

3 BEVControl [73] arXiv’23 N 3 H S - SD VG �

4 BEVGen [72] RA-L’24 N A B S - AR VG �

5 MagicDrive [20] ICLR’24 N 3 B C T S 12Hz SD VG �

6 Panacea [80] CVPR’24 N 3 H C T S 2Hz SD VG �

7 Drive-WM [102] CVPR’24 N 3 H T T S 2Hz SD VG, E2E �

8 GenAD [96] CVPR’24 Y T T S 2Hz SD VG, E2E �

9 DriveDreamer [58] ECCV’24 N 3 H T T S 2Hz SD VG, E2E �

10 DrivingDiffusion [81] ECCV’24 N 3 T S 2Hz SD VG �

11 WoVoGen [90] ECCV’24 N B T C T P S 2Hz SD VG �

12 Vista [103] NeurIPS’24 Y N T L 10Hz SD VG, E2E �

13 SimGen [91] NeurIPS’24 N 3 B S 2Hz SD VG �

14 MagicDrive3D [21] arXiv’24 N 3 B C T S 12Hz SD VG, 3SR �

15 Delphi [86] arXiv’24 N 3 H T L 2Hz SD VG �

16 BEVWorld [85] arXiv’24 N C T S 12Hz AR VG �

17 Panacea+ [104] arXiv’24 N A 3 H C T S 2Hz SD VG �

18 DiVE [76] arXiv’24 N 3 H T L 12Hz DiT VG �

19 DreamForge [105] arXiv’24 N 3 H C T L 12Hz SD, DiT VG �

20 SyntheOcc [75] arXiv’24 N P S 2Hz SD VG �

21 HoloDrive [106] arXiv’24 N 3 S - SD VG �

22 InfinityDrive [107] arXiv’24 Y N T T L 10Hz AR VG �

23 CogDriving [108] arXiv’24 N 3 B S 2Hz DiT VG �

24 UniMLVG [92] arXiv’24 Y N W A 3 B C T L 12Hz DiT VG �

25 DrivePhysica [93] arXiv’24 N 3 H C L 12Hz DiT VG �

26 Doe-1 [109] arXiv’24 N P S 2Hz MLLM VG, E2E �

27 OccScene [110] arXiv’24 N K T T - 2Hz SD VG �

28 DrivingGPT [111] arXiv’24 N N T L 10Hz GPT VG, E2E �

29 DrivingWorld [112] arXiv’24 P N T L 10Hz GPT VG, E2E �

30 DriveDreamer-2 [87] AAAI’25 N 3 H T S 12Hz SD VG �

31 SubjectDrive [82] AAAI’25 N 3 H T S 2Hz SD VG �

32 Glad [83] ICLR’25 N 3 H T S 2Hz SD VG �

33 DualDiff [113] ICRA’25 N 3 H C T P S - SD VG �

34 DriveScape [114] CVPR’25 N 3 H T C T S 10Hz SD VG �

35 DriveDreamer4D [50] CVPR’25 W 3 H S - SD VG, 3SR �

36 DrivingSphere [115] CVPR’25 N P L 12Hz DiT VG �

37 UniScene [77] CVPR’25 N T P L 12Hz SD VG �

38 GEM [116] CVPR’25 Y N T L 10Hz SD VG �

39 MaskGWM [117] CVPR’25 Y N W T T L 10Hz DiT VG �

40 UMGen [118] CVPR’25 W N B T L 2Hz AR VG, E2E �

41 PerLDiff [79] ICCV’25 N K 3 H S - SD VG �

42 DriveArena [119] ICCV’25 N 3 H C T L 12Hz SD, DiT VG �

43 MagicDrive-V2 [74] ICCV’25 N W 3 B T C T L 12Hz DiT VG �

44 InfiniCube [120] ICCV’25 W H P L 10Hz SD VG, 3SR �

45 DiST-4D [121] ICCV’25 N 3 B T C L 12Hz DiT VG, 3SR �

46 Epona [59] ICCV’25 N N T L 5Hz DiT VG, E2E �

47 VaViM [122] arXiv’25 Y N/A L 2Hz MLLM VG �

48 VaVAM [122] arXiv’25 Y N N T L 2Hz MLLM VG, E2E �

49 DualDiff+ [123] arXiv’25 N 3 H C T P S 12Hz SD VG �

50 UniFuture [124] arXiv’25 N N/A S 12Hz SD VG, 3SR �

51 MiLA [125] arXiv’25 N T C T L 12Hz DiT VG �

52 GAIA-2 [126] arXiv’25 P T C T L 30Hz DiT VG �

53 CoGen [127] arXiv’25 N P L 12Hz DiT VG �

54 Nexus [88] arXiv’25 N W P B S 2Hz DiT VG �

55 NoiseController [78] arXiv’25 N 3 B C T S 12Hz SD VG �

56 DriVerse [128] arXiv’25 N W T L 12Hz DiT VG �

57 PosePilot [129] arXiv’25 N C L 2Hz SD,DiT,AR VG �

58 GeoDrive [94] arXiv’25 N C L 12Hz DiT VG, 3SR �

59 Challenger [89] arXiv’25 N 3 B T L 12Hz DiT VG �

60 ProphetDWM [130] arXiv’25 N T L 2Hz SD VG, E2E �

61 LongDWM [131] arXiv’25 N T L 10Hz DiT VG �

62 Cosmos-Drive [35] arXiv’25 P 3 H T L - DiT VG �

63 STAGE [84] arXiv’25 N 3 H T L 12Hz SD VG �

https://arxiv.org/abs/2309.17080
https://arxiv.org/abs/2311.13549
https://arxiv.org/abs/2308.01661
https://arxiv.org/abs/2301.04634
https://arxiv.org/abs/2310.02601
https://arxiv.org/abs/2311.16813
https://arxiv.org/abs/2311.17918
https://arxiv.org/abs/2403.09630
https://arxiv.org/abs/2309.09777
https://arxiv.org/abs/2310.07771
https://arxiv.org/abs/2312.02934
https://arxiv.org/abs/2405.17398
https://arxiv.org/abs/2406.09386
https://arxiv.org/abs/2405.14475
https://arxiv.org/abs/2406.01349
https://arxiv.org/abs/2407.05679
https://arxiv.org/abs/2408.07605
https://arxiv.org/abs/2409.01595
https://arxiv.org/abs/2409.04003
https://arxiv.org/abs/2410.00337
https://arxiv.org/abs/2412.01407
https://arxiv.org/abs/2412.01522
https://arxiv.org/abs/2412.03520
https://arxiv.org/abs/2412.04842
https://arxiv.org/abs/2412.08410
https://arxiv.org/abs/2412.09627
https://arxiv.org/abs/2412.11183
https://arxiv.org/abs/2412.18607
https://arxiv.org/abs/2412.19505
https://arxiv.org/abs/2403.06845
https://arxiv.org/abs/2403.19438
https://arxiv.org/abs/2503.00045
https://arxiv.org/abs/2505.01857
https://arxiv.org/abs/2409.05463
https://arxiv.org/abs/2410.13571
https://arxiv.org/abs/2411.11252
https://arxiv.org/abs/2412.05435
https://arxiv.org/abs/2412.11198
https://arxiv.org/abs/2502.11663
https://arxiv.org/abs/2503.14945
https://arxiv.org/abs/2407.06109
https://arxiv.org/abs/2408.00415
https://arxiv.org/abs/2411.13807
https://arxiv.org/abs/2412.03934
https://arxiv.org/abs/2503.15208
https://arxiv.org/abs/2506.24113
https://arxiv.org/abs/2502.15672
https://arxiv.org/abs/2502.15672
https://arxiv.org/abs/2503.03689
https://arxiv.org/abs/2503.13587
https://arxiv.org/abs/2503.15875
https://arxiv.org/abs/2503.20523
https://arxiv.org/abs/2503.22231
https://arxiv.org/abs/2504.10485
https://arxiv.org/abs/2504.18448
https://arxiv.org/abs/2504.18576
https://arxiv.org/abs/2505.01729
https://arxiv.org/abs/2505.22421
https://arxiv.org/abs/2505.15880
https://arxiv.org/abs/2505.18650
https://arxiv.org/abs/2506.01546
https://arxiv.org/abs/2506.09042
https://arxiv.org/abs/2506.13138
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3.2 World Modeling from Occupancy Generation

Generation models based on occupancy grids tailored to
offer a geometry-centric representation that encodes both
semantic and structural details of the 3D world. By gen-
erating, forecasting, or simulating occupancy in 3D/4D
space, these models provide a geometry-consistent scaffold
for perception, enable action-contingent future prediction,
and support realistic large-scale simulation. Based on their
primary function, existing methods can be grouped into three
categories: Scene Representors, Occupancy Forecasters,
and Autoregressive Simulators. Table 3 summarizes
existing models under these domains.

3.2.1 Scene Representors
Occupancy-based 3D and 4D generation models, designed
for learning structured 3D scene representations, treat the
occupancy grid as a geometry-consistent intermediate for
downstream tasks. Such a paradigm enhances perception
robustness and provides structural guidance for 3D scene
generation across two main applications.
3D Perception Robustness Enhancement. Occupancy-based
representations have emerged as a powerful intermediate
modality for enhancing perception robustness through gener-
ative modeling techniques. SSD [168] pioneered this direction
by employing discrete [200] and latent diffusion [135] models
for scene-level 3D categorical data generation, learning to
map sparse occupancy inputs into dense semantic recon-
structions. SemCity [173] further improves geometric and
semantic fidelity by conditioning diffusion on initial SSC
outputs, reducing inconsistencies in reconstructed scenes.
Generation Consistency Guidance. Other works leverage
occupancy to guide high-fidelity, temporally coherent scene
synthesis. WoVoGen [90] proposes 4D temporal occupancy
volumes to drive multi-view video generation with intra-
world and inter-sensor consistency. UrbanDiff [178] uses
semantic occupancy grids as geometric priors for 3D-aware
image synthesis, while DrivingSphere [115] transforms dy-
namic 4D occupancy scenes into temporally consistent video
via semantic rendering. UniScene [77] generalizes occupancy-
based generation across modalities, combining Gaussian-
based rendering [138] with prior-guided sparse modeling
for unified video and LiDAR synthesis. Collectively, these
methods highlight the role of occupancy grids as a unifying
structural prior for producing spatially and temporally
consistent outputs with high structural fidelity.

3.2.2 Occupancy Forecasters
Models for 4D occupancy forecasting predict future occu-
pancy from ego actions and past observations, allowing antic-
ipation of environmental changes. This capability serves two
purposes: as a self-supervised pretraining task for building
generalizable 3D/4D models, and as a dynamic predictor for
behavior-aware, controllable future scene generation.
Predictive Model Pretraining. Several methods explore oc-
cupancy forecasting as a pretext task to learn rich spatiotem-
poral features from LiDAR sequences, building generalizable
generation models via self-supervised learning. Emergent-
Occ [63], [167] introduces differentiable rendering to recon-
struct point clouds from 4D occupancy predictions, enabling
self-supervised training from raw sequences. UnO [175]
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Fig. 5: The categorization of OccGen models based on
functionalities, including scene representors (Sec. 3.2.1), fore-
casters (Sec. 3.2.2), and autoregressive simulators (Sec. 3.2.3).

models a continuous 4D occupancy field for joint perception
and forecasting. Large-scale pretraining frameworks such
as UniWorld [169], UniScene [170], and DriveWorld [174]
combine image and LiDAR data to learn foundational
occupancy models that can be fine-tuned for downstream
tasks like detection and planning, reducing reliance on dense
labels while improving generalization.
Ego-Conditioned Occupancy Forecasting. Other approaches
forecast occupancy conditioned on both history and ego-
agent actions, supporting behavior-aware and controllable
prediction. OccWorld [177] jointly models ego motion and
surrounding environment evolution in 3D occupancy space,
while OccSora [179] generates trajectory-conditioned 4D
occupancy over long horizons. Later works enhance control-
lability [183], [197], fidelity [185], temporal coherence [182],
[184], [192], and efficiency [196]. Vision-centric pipelines like
Cam4DOcc [171] and its successors [186], [189] integrate
world models into end-to-end planning to empower their
generative abilities. OccLLaMA [181] and Occ-LLM [190]
unify vision, language, and action modalities with semantic
occupancy as the shared representation to support embodied
question answering, while UniOcc [194] establishes a bench-
mark combining real and simulated data for standardized
evaluation. Together, these works position occupancy fore-
casting as both a powerful self-supervised learning objective
and a key tool for modeling dynamic, action-contingent
world states.

3.2.3 Autoregressive Simulators

The occupancy-based autoregressive simulators generate
large-scale, temporally coherent 4D occupancy for realis-
tic and interactive simulation. They serve as foundation
simulators for perception, planning, and decision-making,
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TABLE 3: Summary of occupancy-based generation (OccGen) models.
• Datasets: S SemanticKITTI [16], C CarlaSC [163], N Occ3D-nuScenes [14], W Waymo Open [95], L Lyft-Level5 [164],
A Argoverse 2 [97], 3 KITTI-360 [165], U NYUv2 [9], and O OpenCOOD [166].

• Input & Output: Noise Latent, Latent Codebook, Images, 3D Occ, 4D Occ, and Ego-Action.
• Architectures (Arch.): Enc-Dec : Encoder-Decoder, LDM : Latent Diffusion Model, MSSM : Memory State-Space Model,
AR : Autoregressive Model, DiT : Diffusion Transformer, LLM : Large Language Model.
• Tasks: O3G : 3D Occupancy Generation, O4G : 4D Occupancy Generation, OF : 4D Occupancy Forecasting, PT : Pre-
Training, SSC : Semantic Scene Completion, and E2E : End-to-End Planning.
• Categories: Scene Representor (Sec. 3.2.1), Occ Forecaster (Sec. 3.2.2), and Autoregressive Simulator (Sec. 3.2.3).

# Model Venue Dataset Input Output Condition Len. Arch. Task Cat. URL

1 Emergent-Occ [167] ECCV’22 N N/A 7 Enc-Dec OF, E2E �

2 FF4D [63] CVPR’23 S N A N/A 5 Enc-Dec OF �

3 SSD [168] arXiv’23 C N/A 1 LDM O3G �

4 UniWorld [169] arXiv’23 N N/A - Enc-Dec PT �

5 UniScene [170] RA-L’24 N N/A - Enc-Dec PT �

6 Cam4DOcc [171] CVPR’24 N L T 4 Enc-Dec OF �

7 XCube [172] CVPR’24 W N/A 1 LDM O3G �

8 SemCity [173] CVPR’24 S C N/A 1 LDM O3G, SSC �

9 DriveWorld [174] CVPR’24 N V S 4 MSSM OF, PT �

10 UnO [175] CVPR’24 S N A N/A 6 Enc-Dec OF �

11 PDD [176] ECCV’24 S C N/A 1 LDM O3G �

12 OccWorld [177] ECCV’24 N T 6 AR OF, E2E �

13 WoVoGen [90] ECCV’24 N B 3 LDM O4G �

14 UrbanDiff [178] arXiv’24 N B 1 LDM O3G �

15 OccSora [179] arXiv’24 C N W T 32 DiT O4G �

16 LOPR [180] arXiv’24 N W / T 15 Enc-Dec OF �

17 OccLLaMA [181] arXiv’24 N T 6 LLM O4G �

18 FSF-Net [182] arXiv’24 N N/A 4 Enc-Dec OF, E2E �

19 DOME [183] arXiv’24 N T 11 DiT OF �

20 GaussianAD [184] arXiv’24 N N/A 6 Enc-Dec OF, E2E �

21 OccScene [110] arXiv’24 N S U N/A 1 SD O3G �

22 DFIT-OccWorld [185] arXiv’24 N / T 6 Enc-Dec OF, E2E �

23 Drive-OccWorld [186] AAAI’25 N L C T V S 4 AR OF, E2E �

24 DynamicCity [18] ICLR’25 C N W 3 C T 16 DiT O4G �

25 PreWorld [187] ICLR’25 N T 6 Enc-Dec OF, E2E �

26 OccProphet [188] ICLR’25 N L T 4 Enc-Dec OF �

27 RenderWorld [189] ICRA’25 N / T 6 AR OF, E2E �

28 Occ-LLM [190] ICRA’25 N / T 6 LLM OF, E2E �

29 DrivingSphere [115] CVPR’25 N B - LDM O4G �

30 EfficientOCF [191] CVPR’25 N L T 4 Enc-Dec OF �

31 UniScene [77] CVPR’25 N B 6 DiT O4G, OF �

32 DIO [192] CVPR’25 A N/A 5 Enc-Dec OF �

33 InfiniCube [120] ICCV’25 W 3 H 1 LDM O3G �

34 Control-3D-Scene [193] ICCV’25 C G 1 LDM O3G �

35 UniOcc [194] ICCV’25 N C W O / N/A 6 N/A OF �

36 I2World [195] ICCV’25 N W C T V S 6 AR OF �

37 T3Former [196] arXiv’25 N T 6 AR OF, E2E �

38 COME [197] arXiv’25 N T 6 DiT OF �

39 X -Scene [198] arXiv’25 N 3 B H 1 LDM O3G �

40 PrITTI [199] arXiv’25 3 3 B 1 DiT O3G �

with research focusing on two directions: generating scal-
able unbounded environments and modeling long-horizon
dynamics for controllable closed-loop simulation.
Scalable Open-World Generation. Coarse-to-fine and out-
painting strategies have been explored to construct large-
scale, unbounded 3D occupancy environments. PDD [176]
proposes a scale-varied diffusion framework that progres-
sively generates outdoor scenes from coarse layouts to
fine details, while XCube [172] adopts hierarchical voxel-
based latent diffusion for multi-resolution generation. SemC-
ity [173] adds manipulation functions for scene editing, and
InfiniCube [120] and X -Scene [198] integrate voxel-based oc-
cupancy with consistent visual synthesis for realistic, editable

simulation worlds. Together, these works construct scalable
occupancy-based representations that serve as interactive
and extensible environments for embodied agents.
Long-Horizon Dynamic Simulation. Other works focus
on autoregressive 4D occupancy generation to simulate
dynamic world evolution. OccSora [179] produces trajectory-
conditioned sequences over 16-second horizons, while
DynamicCity [18] enables layout-aware and command-
conditioned generation, supporting controllable scene synthe-
sis and agent interaction. DrivingSphere [115] constructs a 4D
world comprising static backgrounds and dynamic objects for
closed-loop simulation, and UniScene [77] generates layout-
conditioned 4D occupancy with rich semantic and geometric

https://arxiv.org/abs/2210.01917
https://arxiv.org/abs/2302.13130
https://arxiv.org/abs/2301.00527
https://arxiv.org/abs/2308.07234
https://arxiv.org/abs/2305.18829
https://arxiv.org/abs/2311.17663
https://arxiv.org/abs/2312.03806
https://arxiv.org/abs/2403.07773
https://arxiv.org/abs/2405.04390
https://arxiv.org/abs/2406.08691
https://arxiv.org/abs/2311.12085
https://arxiv.org/abs/2311.16038
https://arxiv.org/abs/2312.02934
https://arxiv.org/abs/2403.11697
https://arxiv.org/abs/2405.20337
https://arxiv.org/abs/2407.21126
https://arxiv.org/abs/2409.03272
https://arxiv.org/abs/2409.15841
https://arxiv.org/abs/2410.10429
https://arxiv.org/abs/2412.10371
https://arxiv.org/abs/2412.11183
https://arxiv.org/abs/2412.13772
https://arxiv.org/abs/2408.14197
https://arxiv.org/abs/2410.18084
https://arxiv.org/abs/2502.07309
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detail. These approaches integrate spatial structure and tem-
poral coherence to create realistic, controllable environments
for embodied agent simulation and decision-making.

3.3 World Modeling from LiDAR Generation

LiDAR-based generation models provide geometry-aware
and appearance-invariant representations by modeling com-
plex scenes from point clouds. They enable robust 3D
scene understanding and high-fidelity geometric simula-
tion, offering advantages over image- and occupancy-based
approaches in both geometric fidelity and environmental
robustness. Based on their primary function, these methods
can be classified into three categories: Data Engines,

Action Interpreters, and Autoregressive Simulators.
Table 4 summarizes existing models under these domains.

3.3.1 Data Engines
LiDAR-based data engines mitigate the scarcity of large-
scale LiDAR training data due to high acquisition costs and
annotation challenges by generating diverse and controllable
point clouds [201], [202]. Such models enhance perception
robustness, enable geometrically accurate scene completion,
and support the synthesis of rare or cross-modal scenarios
[49]. Recent approaches focus on four major applications.
Perception Data Augmentation. LiDAR-based generative
modeling supports data augmentation for core 3D perception
tasks such as detection and segmentation, with an emphasis
on geometric fidelity and sensor realism. Early approaches
primarily focused on modeling uncertainty and spatial
structure to synthesize realistic LiDAR scans. DUSty [203]
is a GAN-based framework that synthesizes realistic LiDAR
scans by explicitly disentangling the underlying depth map
from measurement uncertainty. DUSty v2 [204] extends
DUSty by incorporating implicit neural representations,
enabling the model to generate LiDAR range images at
arbitrary resolutions. LiDARGen [205] pioneered the ap-
plication of Langevin dynamics for LiDAR point cloud
generation, achieving superior performance compared to
GANs and VAEs. As the first work to adopt the denoising-
diffusion paradigm in this domain, it has inspired numerous
subsequent studies based on Denoising Diffusion Proba-
bilistic Models (DDPMs) [68]. With explicit positional en-
coding, R2DM [206] achieves higher-precision LiDAR point
cloud generation through a standardized DDPM process.
Leveraging flow matching [207], R2Flow [208] significantly
accelerates LiDAR point cloud generation. LiDM [209],
RangeLDM [210], and 3DiSS [211] adopt latent diffusion
technology by first compressing raw-scale data into low-
dimensional latent variables through a pretrained VAE,
then training the diffusion model in this latent space. The
generated outputs are reconstructed to the original resolution,
substantially improving generation speed while preserving
quality. LiDARGRIT [212] extends this paradigm by discretiz-
ing the latent space with VQ-VAE [213] and generating latent
codes using an autoregressive transformer. LiDARGRIT [212]
further introduces a raydrop estimation loss to explicitly
enhance the raydrop noise modeling. SDS [214] proposes
simultaneous diffusion sampling for multi-view LiDAR
scene generation, producing all views together to achieve
much better geometric consistency than generating each view
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Fig. 6: The categorization of LiDARGen models based on
functionalities, including data engines (Sec. 3.3.1), action fore-
casters (Sec. 3.3.2), and autoregressive simulators (Sec. 3.3.3).

separately. Recently, SPIRAL [215] pioneered the generation
of segmentation-labeled LiDAR data and introduced a novel
closed-loop inference strategy that enhances consistency
between geometry and semantics. La La LiDAR [22] pro-
poses a layout-guided generative framework that integrates
scene graph-based layout diffusion with a foreground-aware
control injector, enabling explicit modeling of object relations
and controllable scene generation. Veila [216] introduces a
conditional diffusion framework for panoramic LiDAR gen-
eration guided by a monocular RGB image. It addresses the
challenges of reliable conditioning, cross-modal alignment,
and maintaining structural coherence beyond the RGB field
of view. These advances enhance LiDAR-based perception by
generating diverse, controllable, and geometrically faithful
training data that capture real-world sensing characteristics.
Scene Completion. The completion of 3D scenes aims to
reconstruct dense and coherent 3D geometry from sparse
or occluded LiDAR scans, with recent generative methods
improving geometric fidelity and controllability. UltraLiDAR
[220] introduces a discrete voxel-based representation for
LiDAR point clouds using a VQ-VAE [213], enabling efficient
and controllable sparse-to-dense completion. LiDiff [222]
and DiffSSC [231] utilize the denoising process of DDPM to
reposition duplicated points, thereby densifying the LiDAR
point cloud while simultaneously completing occluded areas.
Building on UltraLiDAR [220] for background completion
and AnchorFormer [237] for foreground object synthesis,
LiDAR-EDIT [228] enables flexible editing of LiDAR scenes,
including object removal and insertion. By enhancing the
ability to denoise large-magnitude noise, LiDPM [230] ex-
tends LiDiff [222] to generate dense point clouds not only
from sparse inputs but also from pure Gaussian noise, thus
enabling the synthesis of entirely novel scenes. Similarly,
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TABLE 4: Summary of LiDAR-based generation (LiDARGen) models.
• Datasets: K KITTI [11], S SemanticKITTI [16], N nuScenes [10], 3 KITTI-360 [165], P PandaSet [217] C Carla [100],
S SeeingThroughFog [218], W Waymo Open [95], N NAVSIM [99], A Argoverse 2 [97] and O OmniDrive-nuScenes [219].

• Input & Output: Noisy Latent, Latent Codebook, Noisy LiDAR Point Cloud, LiDAR Point Cloud,
LiDAR Sequence, and Images/Videos (Single-View and/or Multi-View).

• Architectures (Arch.): GAN : Generative Adversarial Network, Enc-Dec : Encoder-Decoder, LDM : Latent Diffusion Model,
AR : Autoregressive Model, DiT : Diffusion Transformer, LLM : Large Language Model.
• Tasks: LG : LiDAR Generation, L4G : 4D LiDAR Generation, SEG : 3D Semantic Segmentation, DET : 3D Object Detection,
SC : Scene Completion, OP : Occupancy Prediction, and E2E : End-to-End Planning.
• Categories: Data Engine (Sec. 3.3.1), Action Forecaster (Sec. 3.3.2), and Autoregressive Simulator (Sec. 3.3.3).

# Model Venue Dataset Input Output Condition Len. Arch. Task Cat. URL

1 DUSty [203] IROS’21 K N/A 1 GAN LG, SC �

2 LiDARGen [205] ECCV’22 3 N N/A 1 Enc-Dec LG, SEG, SC �

3 DUSty v2 [204] WACV’23 K L 1 GAN LG, SEG �

4 UltraLiDAR [220] CVPR’23 S K P P 1 Enc-Dec LG, DET, SC �

5 Copilot4D [19] ICLR’24 A K N T 6 LDM, AR L4G �

6 R2DM [206] ICRA’24 3 K N/A 1 Enc-Dec LG, SC �

7 ViDAR [221] CVPR’24 N N/A 6 Enc-Dec L4G, DET, OP, E2E �

8 LiDiff [222] CVPR’24 3 S P 1 Enc-Dec LG, SC �

9 LiDM [209] CVPR’24 3 N S S R T 1 LDM LG �

10 RangeLDM [210] ECCV’24 3 N N/A 1 LDM LG, SC �

11 Text2LiDAR [223] ECCV’24 3 N T 1 Enc-Dec LG, SC �

12 LiDARGRIT [212] arXiv’24 3 K N/A 1 Enc-Dec, AR LG �

13 BEVWorld [85] arXiv’24 C N T 6 LDM L4G, DET �

14 SDS [214] arXiv’24 3 P 1 Enc-Dec LG, SC �

15 HoloDrive [106] arXiv’24 N 3 T 8 LDM L4G �

16 LOGen [224] arXiv’24 N 3 N/A DiT LG �

17 OLiDM [225] AAAI’25 3 N T 3 O 1 Enc-Dec LG, DET, SC �

18 X-Drive [226] ICLR’25 N 3 T 1 LDM LG, DET �

19 LidarDM [227] ICRA’25 3 W H N/A LDM L4G, DET �

20 LiDAR-EDIT [228] ICRA’25 N P 1 Enc-Dec LG, SC, DET �

21 R2Flow [208] ICRA’25 3 N N/A 1 DiT LG �

22 WeatherGen [229] CVPR’25 3 S P 1 Enc-Dec LG, DET �

23 LiDPM [230] IV’25 S P 1 Enc-Dec LG, SC �

24 DiffSSC [231] IROS’25 S 3 P S 1 Enc-Dec LG, SC �

25 HERMES [232] ICCV’25 O N T T N/A AR, LLM L4G, E2E �

26 SuperPC [233] CVPR’25 3 R P 1 Enc-Dec LG, SC �

27 3DiSS [211] arXiv’25 S 3 N/A 1 LDM LG, SEG �

28 Distill-DPO [234] arXiv’25 S P 1 Enc-Dec LG, SC �

29 DriveX [235] arXiv’25 N N T 6 Enc-Dec L4G, OP, E2E �

30 OpenDWM [236] arXiv’25 A 3 N W 3 H N/A VQ-VAE LG, L4G �

31 SPIRAL [215] arXiv’25 S N S 1 Enc-Dec LG, SEG �

32 La La LiDAR [22] arXiv’25 N W O 1 Enc-Dec LG, SEG, DET, SC �

33 Veila [216] arXiv’25 K S N R 1 Enc-Dec LG, SEG �

34 LiDARCrafter [49] arXiv’25 N 3 O 6 Enc-Dec L4G �

Distillation-DPO [234] enhances both completion quality
and inference efficiency of LiDiff [222] through the inte-
gration of Score Distillation [238] and Diffusion-DPO [239].
Recently, SuperPC [233] proposes a unified framework that
transforms point clouds into representation features suitable
for completion, upsampling, denoising, and colorization,
thereby avoiding the error accumulation that can arise from
sequentially applying separate models.

Rare Condition Modeling. To improve the robustness
of 3D perception in adverse conditions, recent methods
explore controllable LiDAR generation for safety-critical
scenarios. Text2LiDAR [223] presents a Transformer-based
architecture that integrates textual information to enable text-
controlled LiDAR point cloud generation. WeatherGen [229]
targets rainy, snowy, and foggy conditions, generating high-
quality LiDAR point clouds for these conditions within a
unified controllable generative model. The practical utility

of the generated point cloud data is validated through 3D
object detection tasks in these adverse weather scenarios.
OLiDM [225] addresses fidelity limitations at the object level
via a two-stage pipeline: it first generates foreground objects,
which are then used as conditions for scene generation,
ensuring controllable and high-quality results at both object
and scene levels. Meanwhile, LOGen [224] proposes an
object-level point cloud generation model to synthesize traffic
participants, conditioned on their relative orientation and
distance to the sensor.

Multimodal Generation. Several recent methods [85], [106]
investigate multimodal generation by synthesizing aligned
LiDAR and image data. X-Drive [226] introduces a dual-
branch diffusion architecture for jointly generating aligned
LiDAR point clouds and multi-view camera images in
driving scenarios. Its key innovation is the cross-modality
epipolar condition module, which improves consistency

https://arxiv.org/abs/2102.11952
https://arxiv.org/abs/2209.03954
https://arxiv.org/abs/2210.11750
https://arxiv.org/abs/2311.01448
https://arxiv.org/abs/2311.01017
https://arxiv.org/abs/2309.09256
https://arxiv.org/abs/2312.17655
https://arxiv.org/abs/2403.13470
https://arxiv.org/abs/2404.00815
https://arxiv.org/abs/2403.10094
https://arxiv.org/abs/2407.19628
https://arxiv.org/abs/2404.05505
https://arxiv.org/abs/2407.05679
https://arxiv.org/abs/2410.11628
https://arxiv.org/abs/2412.01407
https://arxiv.org/abs/2412.07385
https://arxiv.org/abs/2412.17226
https://arxiv.org/abs/2411.01123
https://arxiv.org/abs/2404.02903
https://arxiv.org/abs/2412.00592
https://arxiv.org/abs/2412.02241
https://arxiv.org/abs/2504.13561
https://arxiv.org/abs/2504.17791
https://arxiv.org/abs/2409.18092
https://arxiv.org/abs/2501.14729
https://arxiv.org/abs/2503.14558
https://arxiv.org/abs/2503.21449
https://arxiv.org/abs/2504.11447
https://arxiv.org/abs/2505.19239
https://github.com/SenseTime-FVG/OpenDWM
https://arxiv.org/abs/2505.22643
https://arxiv.org/abs/2508.03691
https://arxiv.org/abs/2508.03690
https://arxiv.org/abs/2508.03692
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between the point cloud and image modalities. Furthermore,
X-Drive [226] supports controllable 3D scene generation
conditioned on heterogeneous inputs, including text descrip-
tions, object bounding boxes, and sensor data variants from
the images or the LiDAR point clouds.

3.3.2 Action Forecasters
Based on past observations, the LiDAR-based world models
functioning as action forecasters generate future LiDAR
sequences conditioned on given future states.
Temporal Modeling. Copilot4D [19] proposes a scalable ap-
proach to building world models, primarily by (1) leveraging
a VQ-VAE [213] model to tokenize complex, unstructured
point cloud inputs, and (2) recasting the Masked Generative
Image Transformer [240] as a discrete diffusion model to
enable parallel denoising and decoding. Copilot4D takes as
input 1–3 seconds of past LiDAR frames along with future
ego actions (poses), and predicts high-quality LiDAR frames
for the next 1–3 seconds. ViDAR [221] takes historical camera
frames as input and predicts future LiDAR frames as output.
This framework further enables pre-training for tasks such
as perception, prediction, and planning.
Multi-Modal Action Forecasters. BEVWorld [85] introduces
a multi-modal tokenizer to extend the generative capability
to both surround-view images and LiDAR point clouds.
DriveX [235] supports multi-modal outputs, including point
clouds, camera images, and semantic maps. By employing
a decoupled latent world modeling strategy that separates
world representation learning for spatial modeling from
latent future decoding for future state prediction, DriveX
effectively simplifies the modeling of complex dynamics
in unstructured scenes. HERMES [232] integrates LLMs to
generate textual descriptions of future frames in addition to
LiDAR, thereby enhancing human–machine interaction.

3.3.3 Autoregressive Simulators
World models functioning as autoregressive simulators
aim to generate temporally coherent LiDAR sequences for
realistic and interactive simulation. These models serve as a
foundation for perception, planning, and decision-making,
with a focus on geometric fidelity and temporal consistency.
Existing methods can be divided into two types based on
their data generation paradigms.
Sequential Autoregressive LiDAR Generation. HoloDrive
[106] presents an autoregressive framework for jointly
generating multi-view camera images and LiDAR point
clouds by introducing a depth prediction branch in the
2D generative model to improve alignment between 2D
and 3D representations. More recently, LiDARCrafter [49]
extends the layout-based two-stage framework of La La
LiDAR [22] to the 4D domain, with an autoregressive LiDAR
sequence generator, supporting fine-grained control, long-
term temporal coherence, and diverse editing capabilities.
Scene-Scale Simulation from Meshes. LidarDM [227] con-
structs mesh grids from point clouds by removing dynamic
objects across multiple frames. It then trains a diffusion
model conditioned on the BEV layout, enabling it to generate
a mesh world. By incorporating dynamic objects with
motion trajectories into this mesh world and performing
ray projection through the scene, LidarDM can synthesize
long sequential LiDAR point clouds.

4 DATASETS & EVALUATIONS

In this section, we provide a comprehensive evaluation
of 3D/4D world modeling across four aspects. 1Datasets
(Sec.4.1) introduce widely used benchmarks with multimodal
inputs and annotations across video, occupancy, and LiDAR
formats. 2Metrics and Protocols (Sec.4.2) define standardized
criteria for assessing generation fidelity, forecasting accuracy,
planning awareness, reconstruction quality, and downstream
performance. 3Quantitative Benchmarks (Sec.4.3) report
results of state-of-the-art models under these protocols.
4Qualitative Analyses (Sec.4.4) highlight strengths, limi-
tations, and trade-offs across different modalities.

4.1 Datasets
In this survey, we discuss real, simulated, and augmented
datasets that support research in 3D and 4D world modeling.
These datasets span urban driving and related settings
and provide rich annotations and conditions needed for
VideoGen, OccGen, and LiDARGen. An overview of popu-
lar datasets and related benchmarks is illustrated in Figure 3.
Additionally, Table 5 provides detailed statistics of each
collection of the video, occupancy, LiDAR, and other relevant
data formats from these mainstream datasets.

Among existing 3D/4D data collections, real-world
datasets supply realism and multimodal context with reliable
calibration. Recent web-scale corpora trade strict calibration
for scale, diversity, and text supervision. Simulators con-
tribute perfect labels, editable layouts, and rare or counterfac-
tual scenarios. Together, these sources form a complementary
foundation for training and evaluating controllable and
planning-aware world models.
Video-based datasets provide long, coherent video se-
quences with reliable calibration, ego pose, and synchro-
nized multi-view images. Conditions that aid controllability
include action logs, HD maps, and language signals such
as captions or driving commands. Real-world datasets, e.g.,
nuScenes [10] and Waymo Open [95], provide surround-view
imagery, accurate poses, and dense perception annotations,
making them strong bases for video generation with map-
or motion-conditioned control. Planning-aware datasets like
NAVSIM [99] and nuPlan [98] pair short scenarios with
ego motion, CAN signals, and maps to support policy-
grounded video modeling. Web-scale video such as OpenDV-
YouTube [96] contributes breadth and language supervi-
sion via captions and ego-action tags, trading off precise
calibration for scale and diversity. Synthetic platforms like
CARLA [100] offer poses and editable layouts for counterfac-
tuals, rare events, and controlled ablations.
Occupancy-based datasets need voxelized 3D supervisions
in a consistent coordinate frame, with semantic labels and
tight alignment to the sensor rig. Conditions that stabilize
learning include HD maps, ego trajectories, and either multi-
view images or LiDAR to anchor the field over time. In
driving settings, ready-to-use real-world benchmarks such
as OpenOccupancy [242], Occ3D-nuScenes [14], NYUv2 [9],
and SSCBench [243] provide standardized voxel grids and
protocols for training and evaluation. Simulated datasets like
CarlaSC [163] offer clean ground truth and full control of
layout and motion, which is useful for ablations and stress
tests. Semantic extensions like SemanticKITTI [16] couple
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TABLE 5: Summary of datasets and benchmarks used for training VideoGen, OccGen, and LiDARGen models.
• Column Keys: # = Total number of frames; # = Total number of occupancy scenes; # = Total number of LiDAR
scenes; Freq = Annotation frequency; Symbol “–” in a cell indicates the information is not provided.
• Tasked by: Video Generation Models (VideoGen, cf. Sec. 3.1), Occupancy Generation Models (OccGen, cf. Sec. 3.2),
and LiDAR Generation Models (LiDARGen, cf. Sec. 3.3). Kindly refer to Table 1 for the definitions of conditions.

# Dataset Venue # Scene # (View) # # Freq Conditions Tasked by URL

K KITTI [11] CVPR’12 22 15k (×4) - 15k 10 D 3 F �

U NYUv2 [9] ECCV’12 464 1449 (×1) 1449 - - D S �

C CARLA [100] CoRL’17 ∞ ∞ ∞ ∞ Free 3 T S �

S SemanticKITTI [16] ICCV’19 22 - 43k 23k 10 S T �

N nuScenes [10] CVPR’20 1000 1.4M (×6) 40k 400k 2 3 B H T V S �

W Waymo Open [95] CVPR’20 1150 1M (×5) - 230k 10 3 B H T V S �

S STF [218] CVPR’20 - 1.4M (×2) - 1.4M 0.1 3 T L P �

V Virtual KITTI 2 [241] arXiv’20 5 40k (×2) - - 10 3 T �

A Argoverse 2 [97] NeurIPS’21 1000 2.7M (×9) - 150k 10 3 T H �

L Lyft-Level5 [164] CoRL’21 170k 282M (×7) 42.5M 42.5M 10 T H �

N nuPlan [98] CVPRW’21 - 24M (×6) - 24M - T H �

P PandaSet [217] ITSC’22 103 48k (×6) - 16k 10 3 L P T S �

O OpenCOOD [166] ICRA’22 73 11k (×4) 11k 11k 10 3 T �

3 KITTI-360 [165] TPAMI’22 379 150k (×4) - 80k 10 3 L P T S H T �

C CarlaSC [163] RA-L’22 24 - 43k 43k 10 T S �

R Robo3D [65] ICCV’23 2194 - - 476k 10 3 T S �

O OpenOccupancy [242] ICCV’23 850 200k (×6) 34k 34k 2 3 T S �

N Occ3D-nuScenes [14] NeurIPS’23 900 240k (×6) 40k 40k 2 3 T S �

Y OpenDV-YouTube [96] CVPR’24 2139 60M (×1) - - 10 T C �

S SSCBench [243] IROS’24 1859 404k (×6) 66k 66k - 3 T S �

N NAVSIM [99] NeurIPS’24 115k 920k (×8) - 115k 2 3 T H �

D DrivingDojo [244] NeurIPS’24 17.8k 1.7M (×1) - - 5 T T �

O OmniDrive [219] CVPR’25 1000 1.4M (×6) 40k - 2 3 T H T �

E EUVS [245] ICCV’25 345 90k (×8) - - - T �

P Pi3DET [202] ICCV’25 25 51k (×1) - 51k 10 3 T �

point-wise labels with occupancy volumes and enable joint
learning of geometry and semantics.
LiDAR-based datasets require raw LiDAR-acquired sweeps
with precise extrinsics, per-sweep ego poses, and object-
level annotations. Additional 2D and 3D cues, such as
HD maps, radar, and camera imagery, enable cross-modal
conditioning, while coverage across weather conditions and
sensor configurations improves robustness. Representative
real-world sources include KITTI [11], nuScenes [10], Waymo
Open [95], and Argoverse2 [97]. NAVSIM [99] supplements
these with short scenario snippets paired with control signals,
supporting downstream planning tasks. For robustness
testing, recent benchmarks [65], [202], [218] capture adverse
weather, inject systematic corruptions, and cover multiple
platforms to assess generalization. Synthetic platforms, such
as CARLA [100], offer clean LiDAR simulations, editable
environments, and controllable signals.

4.2 Evaluation Metrics & Protocols
Standardized evaluations lay the foundation for the devel-
opment of generation models. However, existing literature
has overlooked the importance of establishing a systematic
protocol for evaluations in 3D and 4D.

Here, we organize evaluation metrics for world models
into five perspectives. 1Generation Quality (Sec. 4.2.1)
assesses the realism, coherence, and controllability of syn-
thesized outputs. 2Forecasting Quality (Sec. 4.2.2) evaluates
future predictions given partial observations. 3Planning-
Centric Quality (Sec. 4.2.3) metrics measure safety and rule

compliance in planning. 4Reconstruction-Centric Quality
(Sec. 4.2.4) examines the ability of generation models to re-
produce or simulate novel views. 5Downstream Evaluation
(Sec. 4.2.5) tasks test how world models support tasks like
detection, segmentation, and reasoning. A comprehensive
summary of evaluation metrics is provided in Table 14.
Together, these metrics cover both perceptual fidelity and
utility in embodied decision-making and beyond.

4.2.1 Generation Quality
Generation quality focuses on whether a world model can
produce realistic and coherent outputs given a prompt or
condition. This involves four dimensions: fidelity, consistency,
controllability, and human reference.
Fidelity evaluates how closely a generator matches the real
data distribution and is typically divided into two fami-
lies. Perceptual metrics project samples into a feature space
learned from human-labeled data, where distances align
with human judgments of realism. The Fréchet family [176],
[206], [209], [224], [246], [247], [248] encodes samples, fits
Gaussians to real and generated features, and reports the
Fréchet distance. Some variants differ by modality and
encoder, while semantic versions [215] add labels to align
categories. Other representative metrics include Inception
Score [249], which uses Inception logits to reward confident
and diverse predictions without real references. Statistical
metrics operate directly on geometry or density. They ask
whether the generated set covers the real set, stays within
it, and matches the low-level structure. Some metrics [18],

https://www.cvlibs.net/datasets/kitti/
https://cs.nyu.edu/~fergus/datasets/nyu_depth_v2.html
https://carla.org/
https://semantic-kitti.org/
https://www.nuscenes.org/
https://waymo.com/open/
https://github.com/princeton-computational-imaging/SeeingThroughFog
https://europe.naverlabs.com/proxy-virtual-worlds-vkitti-2/
https://www.argoverse.org/av2.html
https://github.com/lyft/nuscenes-devkit
https://www.nuscenes.org/nuplan
https://pandaset.org/
https://mobility-lab.seas.ucla.edu/opv2v/
https://www.cvlibs.net/datasets/kitti-360/
https://umich-curly.github.io/CarlaSC.github.io/
https://github.com/ldkong1205/Robo3D
https://github.com/JeffWang987/OpenOccupancy
https://tsinghua-mars-lab.github.io/Occ3D/
https://github.com/OpenDriveLab/DriveAGI/blob/main/opendv/README.md
https://github.com/ai4ce/SSCBench
https://github.com/autonomousvision/navsim
https://huggingface.co/datasets/Yuqi1997/DrivingDojo
https://github.com/NVlabs/OmniDrive
https://ai4ce.github.io/EUVS-Benchmark/
https://pi3det.github.io
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[224], [224] target the fidelity–coverage trade-off, probing set
overlap by measuring whether generated samples stay on
the real manifold while sufficiently covering it, while other
metrics [205], [205], [212] quantify distributional discrepancy
in geometry or density via different distance metrics.
Consistency evaluates whether a world model produces
coherent outputs across space, time, and semantics. Spatial
Consistency scores geometric alignment. Some [72], [102]
quantify multi-view agreement by matching keypoints
in overlapping regions, while others evaluate alignment
by projecting the 3D outputs and comparing them with
monocular depth estimates [226]. Temporal Consistency is
measured by cosine similarity [76] between adjacent-frame
embeddings from foundation models [250], [251], and Subject
Consistency [252] tracks identity persistence by comparing
subject-region features [251] across frames.
Controllability measures how well a model adheres to
user-specified inputs, with metric design tailored to the
conditioning modality. When the condition is reference
frames, CLIP Similarity [86], [96] averages cosine similarity
between CLIP embeddings of generated and reference frames
to gauge semantic alignment. Beyond this, layout and object-
level control is typically scored by agreement with detectors
or segmentors on boxes and masks [91], scene-graph control
by count errors and set overlap [193], and camera-pose
control by trajectory rotation and translation errors [129],
Human Preference captures subjective qualities like realism
and plausibility that automated scores may miss. Studies
typically adopt either two-alternative forced choice [131] or
mean opinion score [193] setups, involving both experts and
lay users to provide human evaluation on world models.

4.2.2 Forecasting Quality
Forecasting quality extends beyond unconditional generation
by evaluating how well the model predicts the future evolu-
tion of a scene given partial observations. Here, forecasting
quality is evaluated in spatial and temporal domains.
Spatial Predictive Accuracy in forecasting measures how
well predictions match the actual future in the spatial
domain. For frames and videos, FID, FVD, and frame-level
L1/L2 errors remain standard. IoU evaluates occupancy
forecasts [171] at multiple horizons to separate near- and
long-range correctness. Point-cloud forecasts [19] are evalu-
ated by comparing the predicted and ground-truth sweeps
in 3D space, using Chamfer distance for geometric overlap
and depth-wise errors to quantify per-ray distance accuracy.
Temporal Predictive Accuracy in 4D forecasting assesses
whether predictions remain temporally coherent, especially
without full supervision [194]. Typical examples are Key
Object Dimension Probability [194], which penalizes unlikely
object sizes using category-specific priors, and Temporal
Background Environment Consistency [194], which tracks
static voxels under ego-motion to verify scene rigidity.

4.2.3 Planning-Centric Quality
Planning-centric metrics assess whether the model’s outputs
result in safe, efficient, and rule-compliant decisions, and its
evaluation falls into open-loop and closed-loop.
Open-Loop Planning assessment evaluates predictions that
do not influence future inputs. nuPlan [98] compares pre-
dictions to expert demonstrations using waypoints and

TABLE 6: Benchmarking VideoGen models on the Percep-
tual Fidelity of generation quality evaluations. The reported
metrics are FID and FVD scores on the official nuScenes [10]
validation set. All metrics are the lower the better (↓).

Method Resolution Freq FID ↓ FVD ↓

Single-View Video Generation
DriveDreamer [58] 128×192 2 Hz 14.90 340.80

GenAD [96] 256×448 2 Hz 15.40 184.00
ProphetDWM [130] 256×448 2 Hz 6.90 190.50

Epona [59] 512×1024 5 Hz 7.50 82.80
MaskGWM [117] 288×512 10 Hz 4.00 59.40
LongDWM [131] 480×720 10 Hz 12.30 102.90

DriVerse [128] 480×832 10 Hz 18.20 95.20
InfinityDrive [107] 576×1024 10 Hz 10.93 70.06

GEM [116] 576×1024 10 Hz 10.50 158.50
Vista [103] 576×1024 10 Hz 6.90 89.40

UniFuture [124] 320×576 12 Hz 11.80 99.90
MiLA [125] 360×640 12 Hz 8.90 89.30

GeoDrive [94] 480×720 12 Hz 4.10 61.60
STAGE [84] 512×768 12 Hz 11.04 242.79
Doe-1 [109] 384×672 - 15.90 -

Multi-View Video Generation
Drive-WM [102] 192×384 2 Hz 15.80 122.70

WoVoGen [90] 256×448 2 Hz 27.60 417.70
Panacea [80] 256×512 2 Hz 16.96 139.00

SubjectDrive [82] 256×512 2 Hz 15.98 124.00
Glad [83] 256×512 2 Hz 11.18 188.00

SynthOcc [75] 448×800 2 Hz 14.75 -
CogDriving [108] 480×720 2 Hz 15.30 37.80

DrivingDiffusion [81] 512×512 2 Hz 15.83 332.00
Delphi [86] 512×512 2 Hz 15.08 113.50

MaskGWM [117] 288×512 10 Hz 8.90 65.40
DriveScape [114] 576×1024 10 Hz 8.34 76.39

MagicDrive3D [21] 224×400 12 Hz 20.67 164.72
MagicDrive [20] 224×400 12 Hz 16.20 218.12

DreamForge [105] 224×400 12 Hz 14.61 209.90
DrivePhysica [93] 256×448 12 Hz 3.96 38.06

UniScene [77] 256×512 12 Hz 6.45 71.94
MiLA [125] 360×640 12 Hz 4.90 36.30

CoGen [127] 360×640 12 Hz 10.15 68.43
DiST-4D [121] 424×800 12 Hz 6.83 22.67

DiVE [76] 480×854 12 Hz - 94.60
DrivingSphere [115] 480×1080 12 Hz - 103.40
DriveDreamer-2 [87] 512×512 12 Hz 11.20 55.70
NoiseController [78] 512×1024 12 Hz 13.72 87.23
MagicDrive-V2 [74] 848×1600 12 Hz 20.91 94.84

BEVWorld [85] - 12 Hz 19.00 154.00
UniMLVG [92] - 12 Hz 5.80 36.10
DualDiff [113] 224×400 - 10.99 160.00

BEVGen [72] 224×400 - 24.54 -
PerLDiff [79] 256×708 - 13.36 -

HoloDrive [106] - - 13.60 103.00
BEVControl [73] - - 24.85 -

heading error, and a horizon-dependent Miss Rate, which
thresholds trajectory and heading errors into bounded scores.
To approximate behavioral quality without full interaction,
NAVSIM [99], [253] introduces short non-reactive rollouts
and aggregate safety, drivable-area compliance, progress, and
comfort into a single policy score, using gating and weighted
averaging to align with closed-loop outcomes.
Closed-Loop Planning evaluation executes the policy in
an interactive simulator and scores observed behavior.
CARLA [100] reports route or goal completion and infraction
distance statistics for opposite-lane driving, sidewalk incur-
sions, and collisions with other agents. nuPlan [98] provides
a broader suite of closed-loop checks, including no at-fault
collisions, drivable-area and direction compliance, time-to-
collision bounds, speed-limit compliance, progress along
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TABLE 7: Benchmarking VideoGen models on the Downstream Evaluation tasks. The reported metrics are mAP and
NDS for 3D Object Detection, mIoU (Lanes, Drivable, Divider) for BEV Map Segmentation, L2 and Collision Rates at
timestamps 1s, 2s, and 3s for Open-Loop Planning, and PDMS (P) and ADS (A) scores [119] for Closed-Loop Planning. All
results are computed using the UniAD [254] implementation and checkpoints on the official nuScenes [10] validation set.

Method 3D Det ↑ BEV Seg mIoU (%) ↑ Open-Loop Planning ↓ Closed-Loop Planning ↑
mAP NDS Lane Dri Div L2@1s L2@2s L2@3s CR@1s CR@2s CR@3s P@SG A@SG P@BOS A@BOS

Baseline [254] 37.98 49.85 31.31 69.14 25.93 0.51 0.98 1.65 0.10 0.15 0.61 - - - -

MagicDrive [20] 12.92 28.36 21.95 51.46 17.10 0.57 1.14 1.95 0.10 0.25 0.70 - - - -
Panacea [80] 13.72 27.73 18.23 52.37 17.21 0.58 1.14 1.95 - - - - - - -

DiST-4D [121] 15.63 32.44 26.80 60.32 21.69 0.56 1.11 1.91 - - - - - - -
DriveArena [119] 16.06 30.03 26.14 59.37 20.79 0.56 1.10 1.89 0.02 0.18 0.53 0.76 0.13 0.50 0.045

DreamForge [105] 16.63 30.57 26.16 58.98 20.22 0.55 1.08 1.85 0.08 0.27 0.81 0.81 0.12 0.74 0.076
DrivingSphere [115] 21.45 34.16 57.99 62.87 22.29 0.54 1.10 1.76 - - - - - - -

TABLE 8: Benchmarking VideoGen models on the Down-
stream Evaluation tasks. The reported metrics are mAP and
NDS for 3D Object Detection (w/ BEVFusion [255] and
StreamPETR [256]) and Road-wise mIoU scores (RmIoU) and
Vehicle-wise mIoU scores (VmIoU) for BEV Map Segmenta-
tion (w/ CVT [257]). The results are on the official nuScenes
[10] validation set. All metrics are the higher the better (↑).

Method BEVFusion StreamPETR CVT
mAP NDS mAP NDS RmIoU VmIoU

Baseline 35.54 41.21 34.50 46.90 73.67 34.82

BEVControl [73] - - - - 60.80 26.80
BEVGen [72] - - - - 50.20 5.89
Panacea [80] - - 22.50 36.10 - -

DrivingDiffusion [81] - - - - 63.20 31.60
SimGen [91] - - - - 62.90 31.20

CogDriving [108] - - - - 65.70 32.10
UniMLVG [92] - - - - 70.81 29.12

DrivePhysica [93] - - 35.50 43.67 - -
SubjectDrive [82] - - 28.00 41.10 - -

Glad [83] - - 27.10 40.80 - -
DriveScape [114] - 36.50 - - 64.43 28.86
MagicDrive [20] 12.30 23.32 - - 61.05 27.01

DreamForge [105] 13.01 22.16 26.00 41.10 65.27 28.36
DualDiff [113] 13.99 24.98 - - 62.75 30.22

PerLDiff [79] 15.24 24.05 - - 61.26 27.13
MagicDrive-V2 [74] 17.65 - - - 59.79 32.73

NoiseController [78] 20.93 27.96 - - 64.85 27.32
DrivingSphere [115] 22.71 31.79 - - - -

route, capturing both traffic legality and human-likeness.

4.2.4 Reconstruction-Centric Quality
Reconstruction-centric neural simulators aim to reproject the
past into interactive sensor views or novel viewpoints.
Photometric Fidelity captures low-level rendering quality
when ground-truth images under known viewpoints are
available. Following standard practices in neural rendering,
metrics such as PSNR [258], SSIM [259], and LPIPS [260]
remain foundational. PSNR quantifies pixel-level accuracy,
SSIM evaluates structural consistency in luminance and
texture, while LPIPS measures perceptual similarity in deep
feature space aligned with human visual preferences.
View Changing Consistency evaluates the spatiotemporal
plausibility of novel or counterfactual viewpoints where
ground truth is unavailable [50], [159]. In such settings,
photometric comparison is insufficient. Metrics like Novel
Trajectory Agent IoU [50] assess whether foreground agents
maintain geometrically plausible behavior, offering targeted
signals for validating realism in 4D interactive simulations.

4.2.5 Downstream Evaluation
While the above evaluations assess a world model in iso-
lation, downstream evaluations measure its utility when

integrated into end-to-end perception and decision-making
systems. Tasks span object detection (mAP [261], nuScenes De-
tection Score [10]), multi-object tracking (MOTA, MOTP [262]),
semantic and BEV map segmentation (mIoU), 3D occupancy
prediction and scene completion (voxel-level IoU, Voxelized
Panoptic Quality). In language-grounded settings such as
visual question answering, models like OccLLaMA [181]
report exact-match Top-1 accuracy across question types
and difficulty levels. These evaluations reflect how well
a learned world model supports downstream reasoning,
representation, and control tasks effectively.

4.3 Quantitative Experiments & Analyses

In this section, we quantitatively evaluate world modeling
approaches through 1VideoGen Benchmarks (Sec.4.3.1),
2OccGen Benchmarks (Sec.4.3.2), and 3LiDARGen Bench-
marks (Sec. 4.3.3). Models are assessed on standardized
datasets using fidelity, consistency, and forecasting metrics,
along with downstream perception and planning tasks. These
evaluations reveal both the progress and limitations of
current methods, highlighting key trade-offs between realism,
geometric accuracy, temporal stability, and controllability.

4.3.1 Benchmarking Video Generation Models

Generation Fidelity. Table 6 reports FID and FVD results on
the nuScenes validation set for both single-view and multi-
view vision-based world models. Early baselines such as
GenAD [96] and DriveDreamer [58] operate at relatively low
resolutions and frame rates, achieving modest performance
(FID ∼15, FVD 180–340). Later single-view models improve
visual quality. Vista [103] and InfinityDrive [107] leverage
higher resolutions and frame rates, reducing FVD below
100. Recent works like MaskGWM [117] and GeoDrive [94]
set new state-of-the-art, reaching FID around 4–5 and
FVD near 60. In the multi-view setting, early BEV-based
approaches (BEVControl [73], BEVGen [72]) yield high
FID (>20). Subsequent models, including DriveWM [102],
Panacea [80], and MagicDrive [20] reduce errors but struggle
with temporal stability (FVD >120). Strong improvements
come from models emphasizing geometric consistency and
spatio-temporal alignment. UniScene [77], DriveScape [114],
and DiST-4D [121] achieve the best balance, with FVD scores
below 80 and DiST-4D [121] reaching as low as 22.67.

The comparison suggests resolution and frame rate
strongly influence generation fidelity. Besides, explicit multi-
view modeling is challenging; although many methods re-
duce FID, temporal coherence remains difficult, highlighting
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the importance of structured 4D representations. Finally,
methods combining geometry-aware priors with temporal
reasoning, such as DiST-4D and UniScene, demonstrate that
enforcing spatial structure and temporal consistency jointly
is crucial for scalable autonomous driving video generation.
Downstream Evaluations. Table 8 and Table 7 evaluate
downstream perception and planning on generated scenes.
Early generative baselines (BEVControl [73], BEVGen [72])
provide limited perception benefits, especially in vehicle
segmentation (< 27% mIoU). More advanced methods
such as MagicDrive [20] and DreamForge [105] improve
both detection (up to 26 mAP on StreamPETR [256]) and
segmentation (> 61% road mIoU), while DrivePhysica [93]
and Glad [83] further push detection accuracy (35.5 mAP,
43.7 NDS). For segmentation, UniMLVG [92] and CogDriv-
ing [108] achieve the highest fidelity (70.8% road, 32.1%
vehicle mIoU). Beyond perception, planning performance
highlights the persistent gap between synthetic and real
data. While real nuScenes provides the upper bound (37.9
mAP, 49.9 NDS, 1.05 Avg L2), generative methods lag
significantly in detection and planning accuracy. Neverthe-
less, world models like DriveArena [119] and DreamForge
demonstrate reduced planning errors and collision rates,
enabling preliminary closed-loop driving with non-trivial
success rates (e.g., 0.81 PDMS). DrivingSphere [115] achieves
the strongest drivable area segmentation (>58% mIoU),
while DiST-4D [121] balances detection and segmentation
performance but lacks closed-loop validation.

Overall, the results show that photorealistic generation
alone is insufficient to improve downstream tasks; explicit
modeling of geometry, temporal consistency, and motion
dynamics is crucial. Models that incorporate such priors not
only enhance detection and segmentation but also support
safer planning by reducing collisions and trajectory errors.
Strong segmentation fidelity further demonstrates the benefit
of multi-view and structure-aware models in capturing
global layouts, yet the performance gap to real data remains
significant, underscoring the challenge of aligning generative
fidelity with task-level utility.

4.3.2 Benchmarking Occupancy Generation Models
Occupancy Reconstruction Quality. Table 9 evaluates the
reconstruction capability of occupancy world models un-
der VAE-based formulations. Conventional VAEs such as
DOME [183] already achieve strong results (83.08% mIoU,
77.25% IoU), outperforming most VQVAEs. While Urban-
Diff [178] and I2World [195] show competitive IoU, other
variants like OccSora [179] degrade significantly under coarse
temporal–spatial compression. Triplane-based VAEs [173],
[196], [198] bring the largest gains, with T3Former [196]
reaching 85.50% mIoU and X-Scene [198] establishing a new
state-of-the-art at 92.40% mIoU and 85.60% IoU.

These results underline that latent representation design
is decisive for reconstruction fidelity. Triplane factorization
enforces geometric consistency and enables finer spatial
detail, while simply enlarging latent dimensionality (e.g.,
UrbanDiff [178] with 2048 channels) yields limited returns.
Compact VAEs such as UniScene [77] further show that
well-regularized low-dimensional spaces can generalize effec-
tively, whereas aggressive compression (e.g., OccSora [179])
sacrifices accuracy. Overall, effective compression combined

TABLE 9: Benchmarking OccGen models on Reconstruction
Quality. The reported metrics are mIoU (%) for Semantic
Occupancy Reconstruction and IoU (%) for Occupancy
Reconstruction. All results are on the official nuScenes [10]
validation set. Both metrics are the higher the better (↑).

Method Type Resolution mIoU ↑ IoU ↑

OccSora [179] VQVAE (T
8
, 25, 25, 512) 27.40 37.00

OccLLaMA [181] VQVAE (50, 50, 128) 65.93 57.66
OccWorld [177] VQVAE (50, 50, 128) 66.38 62.29
UrbanDiff [178] VQVAE (50, 50, 2048) 80.00 98.80

I2World [195] VQVAE (50, 50, 128) 81.22 68.30

Occ-LLM [190] VAE (50, 50, 64) 71.08 62.74
UniScene [77] VAE (50, 50, 8) 72.90 64.10

DOME [183] VAE (25, 25, 64) 83.08 77.25
UniScene [77] VAE (100, 100, 8) 92.10 87.00

T3Former [196] Triplane-VAE (100, 100, 16, 8) 85.50 72.07
X-Scene [198] Triplane-VAE (100, 100, 16, 8) 92.40 85.60

TABLE 10: Benchmarking OccGen models on 4D Occupancy
Forecasting Quality. The reported metrics are mIoU (%)
for Semantic Occupancy Reconstruction and IoU (%) for
Occupancy Reconstruction, respectively, at timestamps 1s,
2s, and 3s. All results are on the official nuScenes [10]
validation set. Both metrics are the higher the better (↑).

Method mIoU (%) ↑ IoU (%) ↑
1s 2s 3s 1s 2s 3s

GaussianAD [184] 6.29 5.36 4.58 14.13 14.09 14.04
PreWorld [187] 12.27 9.24 7.15 23.62 21.62 19.63
Occ-LLM [190] 24.02 21.65 17.29 36.65 32.14 28.77

OccLLaMA [181] 25.05 19.49 15.26 34.56 28.53 24.41
OccWorld [177] 25.78 15.14 10.51 34.63 25.07 20.18

RenderWorld [189] 28.69 18.89 14.83 37.74 28.41 24.08
COME [197] 30.57 19.91 13.38 36.96 28.26 21.86

DFIT-OccWorld [185] 31.68 21.29 15.18 40.28 31.24 25.29
DOME [183] 35.11 25.89 20.29 43.99 35.36 29.74

UniScene [77] 35.37 29.59 25.08 38.34 32.70 29.09
T3Former [196] 46.32 33.23 28.73 77.00 75.89 76.32

I2World [195] 47.62 38.58 32.98 54.29 49.43 45.69

with explicit geometric priors is key to scalable and accurate
3D and 4D scene modeling.
4D Occupancy Forecasting Quality. Table 10 presents 4D
occupancy forecasting results over the period of 1–3 seconds.
Baselines such as OccWorld [177] and OccLLaMA [181]
achieve moderate performance (17–20% mIoU), while
DOME [183] and UniScene [77] improve temporal stability
(27.10% and 31.76% mIoU). More recent models show further
progress: I2World [195] reaches 39.73% mIoU with balanced
IoU, and T3Former [196] excels in spatial coherence with
76.40% IoU. The comparisons reveal three insights. First,
naive autoregressive or generative approaches deteriorate
rapidly at longer horizons, highlighting the need for struc-
tured priors. Second, triplane factorization substantially
improves spatial fidelity, as reflected in the performance of
T3Former [196]. Third, I2World shows that coupling scalable
latent reasoning with temporal modeling yields the best bal-
ance across horizons. Accurate 4D forecasting thus requires
not only generative power but also structured representations
that enforce geometric and temporal consistency.
End-to-End Planning. Table 11 reports the performance
of end-to-end planning, measured by trajectory error
(L2) and collision rate. Sequence-based planners like ST-
P3 [263] perform poorly (2.11 meters in L2 error), while
UniAD [254] and GenAD [96] achieve substantial gains,
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Fig. 7: Qualitative comparisons of state-of-the-art VideoGen models on the nuScenes [10] dataset. From top to bottom rows:
Reference (from the dataset), MagicDrive [20], DreamForge [105], DriveDreamer-2 [87], and OpenDWM [236].

TABLE 11: Benchmarking OccGen models on Motion Plan-
ning Quality. The reported metrics are L2 Error Rate (in
meters) and Collision Rate (%), respectively, at timestamps
1s, 2s, and 3s. All results are on the official nuScenes [10]
validation set. Both metrics are the lower the better (↓).

Method L2 Error (m) ↓ Collision Rate (%) ↓
1s 2s 3s 1s 2s 3s

ST-P3 [263] 1.33 2.11 2.90 0.23 0.62 1.27
OccNet [264] 1.29 2.13 2.99 0.21 0.59 1.37

FSF-Net [182] 0.54 1.09 - 0.01 0.01 -
UniAD [254] 0.48 0.96 1.65 0.05 0.17 0.71

OccWorld [177] 0.43 1.08 1.99 0.07 0.38 1.35
PreWorld [187] 0.41 1.16 2.32 0.50 0.88 2.42

GaussianAD [184] 0.40 0.64 0.88 0.09 0.38 0.81
DFIT-OccWorld [185] 0.38 0.96 1.75 0.07 0.39 0.90

Occ-LLaMA [181] 0.37 1.02 2.03 0.04 0.24 1.20
GenAD [96] 0.36 0.83 1.55 0.06 0.23 1.00

RenderWorld [189] 0.35 0.91 1.84 0.05 0.40 1.39
T3Former [196] 0.32 0.91 1.76 0.08 0.32 0.51

Drive-OccWorld [186] 0.32 0.75 1.49 0.05 0.17 0.64
Occ-LLM [190] 0.12 0.24 0.49 - - -

with UniAD+DriveWorld [174] further improving to 0.69
meter in L2 error and 0.19% collisions. Occupancy-based
world models such as OccWorld [177] and OccLLaMA [181]
reduce errors to around 1.15 meters. Structured refinements
(e.g., DFIT-OccWorld [185], RenderWorld [189], and Drive-
OccWorld [186]) achieve stronger accuracy and safety, with
Drive-OccWorld reaching 0.85 m in L2 error and 0.29%
collisions. Notably, GaussianAD [184] and T3Former [196]
balance error and safety, while Occ-LLM [190] reports

extremely low error (i.e., only 0.28 meter in L2 error). The
results show that integrating occupancy world models into
planning pipelines consistently outperforms pure trajectory-
based methods. Hybrid designs that refine occupancy priors,
such as Drive-OccWorld [186] and DFIT-OccWorld [185],
bring joint improvements in accuracy and safety, demon-
strating the downstream robustness of generative modeling.
Overall, structured occupancy representations form a strong
foundation for end-to-end autonomous driving, enabling
reliable long-horizon planning in complex scenarios.

4.3.3 Benchmarking LiDAR Generation Models

Generation Fidelity. Table 12 reports the performance of re-
cent LiDAR scene generation methods on SemanticKITTI [16]
using four fidelity metrics (FRD, FPD, JSD, and MMD).
Earlier methods such as LiDARGen [205] and LiDM [209]
exhibit relatively large distributional discrepancies, as re-
flected by high FRD and FPD scores. In contrast, more
recent approaches, including R2DM [206], Text2LiDAR [223],
and WeatherGen [229], achieve substantially better results
across most metrics, indicating a closer alignment between
generated and real LiDAR distributions.

The results reveal a clear progression in LiDAR gen-
eration quality. Among evaluated methods, WeatherGen
[229] achieves the best performance across all metrics by
employing Mamba [265] as its backbone. Interestingly,
Text2LiDAR [223], despite its strong conditioning on textual
input, produces higher FRD, suggesting that aligning with
semantic prompts may compromise geometric fidelity. These
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Fig. 8: Qualitative comparisons of state-of-the-art VideoGen models on the nuScenes [10] dataset. From top to bottom rows:
Reference (from the dataset), MagicDrive [20], DreamForge [105], DriveDreamer-2 [87], and OpenDWM [236].

TABLE 12: Benchmarking LiDARGen models on the Per-
ceptual Fidelity evaluations. The reported metrics are FRD,
FPD, JSD and MMD scores on the official SemanticKITTI [16]
dataset. All metrics are the lower the better (↓).

Method Resolution FRD↓ FPD↓ JSD↓ MMD↓

LiDARGen [205] 64×1024 681.37 115.17 0.1323 2.19×10−3

LiDM [209] 64×1024 - 108.70 0.0456 2.90×10−4

R2DM [206] 64×1024 192.81 19.29 0.0373 1.60×10−4

Text2LiDAR [223] 64×1024 522.32 11.09 0.0750 4.29×10−4

WeatherGen [229] 64×1024 184.11 11.42 0.0290 3.80×10−5

TABLE 13: Benchmarking LiDARGen models on 4D LiDAR
Generation Quality. The reported metrics are TTCE and
CTC. The numbers indicate frame intervals. All results are
on nuScenes [10]. Both metrics are the lower the better (↓).

Method TTCE ↓ CTC ↓
3 4 1 2 3 4

UniScene [77] 2.74 3.69 0.90 1.84 3.64 3.90
OpenDWM [236] 2.68 3.65 1.02 2.02 3.37 5.05

OpenDWM-DiT [236] 2.71 3.66 0.89 1.79 3.06 4.64
LiDARCrafter [49] 2.65 3.56 1.12 2.38 3.02 4.81

findings underscore the importance of balancing semantic
controllability with distributional realism in future LiDAR
scene generation research.
4D LiDAR Generation Quality. Table 13 benchmarks recent
LiDAR-based 4D scene generation methods on temporal
coherence, using TTCE (Temporal Transformation Consis-
tency Error) and CTC (Chamfer Temporal Consistency) as

evaluation metrics. Unlike video generation, which has been
extensively studied with standardized benchmarks, temporal
LiDAR generation remains relatively underexplored, and
current metrics mainly focus on explicit geometric alignment
across frames. The results reveal several observations. First,
end-to-end autoregressive methods such as UniScene [77]
and OpenDWM-DiT [236] demonstrate clear advantages in
maintaining short-horizon geometric consistency, as reflected
in lower TTCE and CTC at 1–2 frame intervals. However,
their fixed-length generation limits broader applicability, as
error accumulation grows at longer horizons. Second, incor-
porating strong vector quantization modules [236] facilitates
better condition embedding and fine-grained reconstruction,
leading to improved temporal stability. Third, modality
choices introduce inherent trade-offs: BEV-based generation
offers smoother temporal continuity but sacrifices fidelity to
the raw point cloud pattern, while range-based [49] genera-
tion better preserves LiDAR-specific sensing characteristics
but requires careful design to embed conditions and sustain
long-term consistency.

4.4 Qualitative Experiments & Analyses
In this section, we qualitatively evaluate the 3D and
4D generation approaches through 1VideoGen Visualiza-
tions (Sec.4.4.1), 2OccGen Visualizations (Sec.4.4.2), and
3LiDARGen Visualizations (Sec. 4.4.3). These evaluations
highlight the strengths, limitations, and trade-offs of current
methods, informing future advances in realism, consistency,
and generalization.
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Fig. 9: Qualitative examples of OccGen models on the nuScenes [10] dataset. From left to right columns: The input condition,
the generated multi-view videos, and the generated occupancy grids. The results are generated using X -Scene [198].
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4.4.1 Qualitative Analyses of VideoGen Models
Visual Realism. Figure 7 and Figure 8 compare recent video
generation world models, including MagicDrive [20], Dream-
Forge [105], DriveDreamer-2 [58], and OpenDWM [236]. The
generated scenes capture overall layouts and semantics close
to real-world distributions, but fine-grained details often
suffer from pixel misalignment, blurred textures, and struc-
tural discontinuities. Among the methods, OpenDWM [236]
achieves the most realistic, consistent, and controllable re-
sults, owing to its training on diverse datasets (OpenDV [96],
nuScenes [10], and Waymo Open [95]), while others rely on a
single dataset. This underscores the role of dataset diversity
in improving generalization and robustness.
Physical Plausibility. In the absence of explicit physics
constraints, generated videos may exhibit violations of phys-
ical realism, such as vehicle–background interpenetration,
incorrect shadows, or scale distortions. While such issues
may appear subtle in static frames, they significantly reduce
realism when viewed as continuous video, undermining
temporal coherence and physical plausibility.
Controllability. Appearance-level controls (weather, time-
of-day, style) can be reliably controlled via large-scale pre-
trained video generation models with text conditioning. By
contrast, precise geometric control over object position, orien-
tation, and velocity remains challenging, typically requiring
dedicated control embeddings or structured conditioning
mechanisms.
Long-Tail Categories. Rare and small-scale classes (e.g.,
pedestrians, cyclists, traffic signs) remain hard to generate
convincingly. Long-tail data imbalance often leads to unreal-
istic shapes, distorted geometry, or even omission of these
critical objects.
Takeaways. The results suggest that future progress in
video-based world models requires advances along five
critical axes: (i) realism, reducing artifacts and enhancing
detail fidelity; (ii) consistency, maintaining semantic and
temporal coherence; (iii) controllability, unifying high-level
appearance control with fine-grained geometric control; (iv)
physical plausibility, incorporating physics priors to pre-
vent unrealistic artifacts; and (v) generalization, leveraging
diverse large-scale datasets to improve robustness.

4.4.2 Qualitative Analyses of OccGen Models
3D Geometric Consistency. Figure 9 shows qualitative
results of occupancy generation models conditioned on scene
layouts. The generated multi-view videos and occupancies
exhibit strong spatial alignment across different perspectives.
Such cross-view coherence is crucial for maintaining geomet-
ric plausibility in multi-camera settings.
Occupancy Fidelity. The generated occupancies preserve
key semantics, including drivable areas, sidewalks, and
surrounding objects. While overall layouts are captured
reliably for downstream perception, fine-grained geometry
(e.g., thin lane boundaries, small dynamic agents) remains
challenging, often leading to misalignment or incomplete
reconstruction.
Controllability and Generalization. Conditioned on high-
level scene priors, models can flexibly adapt to diverse
intersection layouts and road structures, demonstrating
promising controllability. However, rare structures and long-
tail categories (e.g., bicycles, pedestrians) are often poorly

represented, revealing limitations in data diversity and
generalization capacity.
Takeaways. These results suggest that progress in occupancy
generation hinges on three aspects: (i) geometric consistency,
ensuring spatial coherence across 3D environments; (ii) fine-
grained fidelity, particularly for small-scale and dynamic
objects; and (iii) generalization, leveraging diverse datasets
to handle rare layouts and long-tail classes. Advancing these
aspects is essential for robust world models capable of
supporting downstream tasks and closed-loop simulation.

4.4.3 Qualitative Analyses of LiDARGen Models
Global Patterns. Figure 10 compares representative LiDAR
generation paradigms. The original scans exhibit dense
rings with uniform angular spacing, faithfully capturing
both static structures and dynamic objects. The voxel-
based OpenDWM [236] emphasizes coherent scene geometry
but often yields overly regularized patterns due to voxel-
level modeling. The range-based LiDARCrafter [49] better
preserves the native scanline structure with sharper rings,
though it may introduce artifacts around occlusion bound-
aries. The occupancy-based UniScene [77] reproduces global
distributions but tends to oversmooth fine details, leading to
discontinuities.
Point Cloud Sparsity. Given the inherent sparsity of LiDAR
data, generation models must balance realistic density with
structural consistency. OpenDWM [236] often produces
overly sparse regions, especially at long ranges. LiDAR-
Crafter [49] maintains more uniform angular density, closely
following the sensor’s scanning characteristics. UniScene [77]
provides globally complete coverage but sometimes intro-
duces artificial filling inconsistent with real sensor patterns.
Object Completeness. Dynamic agents such as vehicles
are particularly important for downstream perception and
planning. OpenDWM [236] frequently underrepresents object
contours, resulting in fragmented or partial shapes. LiDAR-
Crafter [49] offers better surface completion, though finer
details can be noisy. UniScene [77] reconstructs volumetri-
cally plausible objects with consistent occupancy, but often
lacks the sharp boundaries and crisp detail of real scans.
Takeaways. These results highlight three key attributes
for LiDAR generation: (i) global patterns, ensuring coher-
ent scene geometry while preserving sensor-specific scan
structures; (ii) point sparsity, maintaining realistic density
distributions that match LiDAR characteristics; and (iii)
object completeness, accurately capturing dynamic agents
with sharp contours and consistent surfaces. Future advances
will require balancing these attributes to generate LiDAR
sequences that are both perceptually realistic and physically
faithful to sensor properties.

5 APPLICATIONS

The versatility of 3D and 4D world models enables de-
ployment across diverse domains. 1Autonomous Driving
(Sec. 5.1) supports simulation, evaluation, and scenario
synthesis. 2Robotics (Sec. 5.2) leverages them for navigation,
manipulation, and scalable simulation. 3Video Games & XR
(Sec. 5.3) benefit from content generation, immersive render-
ing, and adaptive environments. 4Digital Twins (Sec. 5.4) en-
able city-scale reconstruction, event replay, and scene editing.



22

Reference OpenDWM LiDARCrafterUniScene

F = 1

F = 2

F = 3

F = 4

F = 5

Fig. 10: Qualitative comparisons of state-of-the-art LiDARGen models on the nuScenes [10] dataset. From left to right
columns: Reference (from the dataset), OpenDWM [236], UniScene [77], and LiDARCrafter [49].

5Emerging Applications (Sec. 5.5) span scientific discovery,
healthcare, industry, and disaster response. Together, these
applications showcase the role of world models in unifying
perception, prediction, and generation across domains.

5.1 Autonomous Driving

3D and 4D world models provide a principled foundation for
autonomous driving, supporting simulation, evaluation, and
scenario synthesis. They enable controllable, interactive, and
safety-critical environments that cannot be easily reproduced
in the real world. We outline three major applications.
Traffic Simulation. World models enable realistic traffic
simulators with heterogeneous agents, diverse motion, and
physics-compliant interactions. Compared with image-only
platforms, volumetric representations such as occupancy
grids [179], [185], multi-frame LiDAR point clouds [49],
or scene-level meshes [12] provide richer geometry and
temporal coherence [102], [266]. Modern systems further
support controllable parameters (e.g., traffic density, intent,
weather) and stochastic perturbations, improving robustness
and generalization for downstream policies [58], [60], [80],
[87], [104], [125], [126], [267].

Closed-Loop Driving Evaluation. Beyond static benchmarks,
closed-loop setups couple generative models with agents to
assess perception→planning→control stacks over long hori-
zons [50], [266]. By jointly modeling ego behavior and sur-
rounding traffic dynamics, models create responsive environ-
ments that adapt to agent actions in real time [49], [94]. This
allows scalable evaluation of robustness under distribution
shifts, rare events, and recovery after failures [126], [267],
while modular conditioning (e.g., HD maps, text queries, and
ego trajectories) enables targeted stress testing [74], [94].

Scenario Synthesis. World models can generate rare or
safety-critical driving scenes that are underrepresented in real
datasets, which is essential for evaluating robustness. Typical
cases include severe occlusions, sudden intrusions, multi-
agent conflicts, and adverse weather [22], [215], [268]. Con-
trollable generation with HD maps, semantic masks, scene
graphs, or textual prompts enables targeted testing [49], [94],
[215]. Physics- and motion-aware models ensure dynamic
feasibility [269], [270], while stochastic sampling improves
coverage of rare events. LiDAR-centric approaches such
as LiDARCrafter [49] further extend this capability to 4D
sequences with temporal coherence.
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5.2 Robotics

3D and 4D world models have the potential to enhance
robotic intelligence by supporting navigation, manipulation,
and simulation. They provide spatial-temporal grounding,
physical reasoning, and scalable synthetic environments,
which are crucial for robust policy learning.
Embodied Navigation. Robots leverage world models to
perceive and predict dynamic layouts, enabling long-horizon
exploration, obstacle avoidance, and localization in both
structured and unstructured settings [25], [271], [272]. Fore-
casting future states is critical in crowded or occluded
scenes [271], [273], where multi-scan LiDAR, voxelized
occupancy, and predictive dynamics provide reliable spatial-
temporal cues [266], [274]. Recent studies also combine visual,
topological, and linguistic signals for instruction following
and adaptive decision-making [25], [275].
Object-Centric Manipulation. For this task, models capture
object geometry and physical transitions, allowing robots to
anticipate contact dynamics and plan stable grasps or rear-
rangements [26], [276], [277]. Representations such as meshes,
keypoint graphs, and volumetric embeddings support fine-
grained control and generalization to new objects [278], [279].
Integration of differentiable physics with generative models
yields physically consistent predictions that can be optimized
for various tasks [26], [277], [280].
Scene Generation for Simulation. Generative models create
diverse synthetic environments, reducing manual design
costs for training and evaluation [271], [281], [282]. Proce-
dural variation in layout, semantics, and dynamics exposes
robots to a wide range of scenarios, improving robustness
and sim-to-real transfer [25], [26], [272], [280]. Flexible scene
representations, from meshes to voxel grids and point
clouds, further enable integration with both physics-based
simulators and photorealistic renderers [277], [278].

5.3 Video Games & XR

World models transform gaming and XR by automating con-
tent creation, supporting immersive rendering, and enabling
adaptive environments that respond to player actions.
Procedural World Generation. Generative models auto-
mate the design of expansive virtual worlds, supporting
open exploration and emergent gameplay [283], [284], [285].
Procedural pipelines can incorporate maps, player states,
or language prompts to scale content production beyond
manual asset creation [283], [286]. Maintaining temporal
and semantic coherence is key for believable dynamic
evolution [287], while diverse scene representations such
as point clouds, voxels, and neural radiance fields balance
realism, style, and efficiency [138], [213].
Interactive Scene Rendering. Immersive XR requires real-
time rendering of dynamic scenes where users move freely
through evolving geometry and lighting [288], [289]. Neural
representations including NeRF [213] and Gaussian Splat-
ting [138] advance photorealistic synthesis, with temporal
extensions modeling motion and state change [290], [291].
To ensure consistency and comfort, systems must maintain
geometric fidelity under arbitrary viewpoints, adapt scene
content to user actions [29], [292], and employ efficient
pipelines to sustain high frame rates.

Playable Environment Adaptation. Adaptive worlds adjust
geometry, layout, and agent behavior to sustain challenge
and engagement [284], [293], [294], [295]. 3D/4D models
support real-time transformations such as altering terrain,
collapsing structures, or spawning entities based on player
interactions [286], [293]. By leveraging priors or high-level
instructions, these systems preserve style, physics, and
narrative coherence [49], [287], thereby enhancing immersion,
replayability, and personalized gameplay.

5.4 Digital Twins

3D and 4D world models underpin urban digital twins
by enabling large-scale reconstruction, event replay, and
interactive editing. These capabilities support planning,
analysis, and simulation in smart city applications.
City-Scale Scene Modeling. Digital twins integrate mul-
timodal sensing, including LiDAR, RGB-D, aerial pho-
togrammetry, and drone surveys, to capture both static
infrastructure and dynamic activities [18], [296], [297]. They
enable applications such as traffic monitoring, infrastructure
planning, and disaster response [16], [298], while dynamic
modeling simulates pedestrian and vehicle flows for capacity
planning [299], [300]. Recent advances in streaming pipelines
and 4D compression maintain temporal consistency and
allow metropolitan-scale deployment [5], [301].
Event Replay & Forecasting. World models reconstruct past
or hypothetical events from sparse sensor logs, aiding anal-
ysis of incidents [302], [303], construction monitoring [304],
or emergency response [305]. Replayable 4D scenes clarify
causality, while predictive extensions enable what-if simu-
lations for evaluating interventions. Alignment with sensor
ground truth remains critical for reliability.
Scene Control & Editing. Interactive tools allow users to
manipulate urban content for simulation and visualization,
including vehicle removal, weather alteration, and layout
modification [287], [301]. Such controllability improves plan-
ning workflows and supports immersive city-scale analysis.

5.5 Other Emerging Applications

Beyond autonomous driving and robotics, 3D and 4D world
models are expanding into scientific, medical, industrial, and
safety-critical domains. These applications highlight their
versatility in modeling complex spatial–temporal systems.
Scientific Discovery and Environmental Modeling. World
models capture natural dynamics from multimodal obser-
vations, supporting forecasting and exploratory simulation.
Applications include climate and weather prediction [306],
[307], [308], monitoring glacier retreat or floods, and simu-
lating wildfire spread. By learning directly from data, they
complement physics-based solvers with faster iteration.
Healthcare & Biomechanics. Generative 3D models repro-
duce anatomy deformation and tissue behavior for surgical
training, planning, and guidance [309]. Predictive motion
models aid rehabilitation, prosthetics, and injury prevention
by anticipating joint trajectories [310], enhanced by multi-
view capture and volumetric reconstruction.
Industrial Process & Manufacturing Simulation. Virtual
prototyping with world models supports robotic assembly,
material handling, and inspection [157], [311]. Temporal
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simulation of component interactions reduces costly trials
and enables analysis of efficiency and fault recovery.
Security, Defense & Disaster Response. Synthetic environ-
ments simulate tactical operations, hazardous conditions,
and evacuations [312]. Dynamic scene modeling further
aids disaster preparedness by predicting structural collapse,
fire spread, or chemical dispersion, and testing emergency
response plans.

6 CHALLENGES & FUTURE DIRECTIONS

In this section, we highlight key challenges of world mod-
els, including benchmarking, long-horizon fidelity, physical
realism, efficiency, and cross-modal coherence, and outline
directions for future research.

6.1 Standardized Benchmarking & Evaluations

A major barrier to progress in the driving world models is the
lack of common, standardized benchmarks and evaluation
protocols. Current studies often utilize different datasets or
ad hoc metrics, which makes it difficult to meaningfully
compare models and assess their true performance in diverse
realistic settings [252], [313], [314], [315]. Establishing uni-
fied benchmarks can provide a comprehensive evaluation
framework that captures key metrics such as physical plau-
sibility, temporal consistency, and controllability. Moreover,
standardized evaluations should encompass both closed-
loop simulation tests and real-world scenarios to validate the
model’s capabilities under varying traffic densities, weather
conditions, and complex urban architectures [119]. Future
work must focus on developing these benchmarks to ensure
fair and transparent comparisons across different approaches.

6.2 High-Fidelity & Long-Horizon Generation

Another critical challenge in world models for autonomous
driving is achieving high-fidelity generation over long time
horizons [92], [105]. While short-term predictions may cap-
ture immediate interactions with reasonable accuracy, small
errors tend to accumulate over longer sequences, leading to
unrealistic behaviors and degradation of scene consistency.
The difficulty of maintaining both high visual fidelity and
long-horizon coherence is compounded by the complexity of
dynamic urban environments, where interactions between
multiple agents and environmental factors evolve continu-
ously. Addressing these issues requires advanced generative
techniques that explore novel training paradigms [59] and
memory mechanisms [107] that effectively penalize long-
term divergences to enable reliable long-term simulation.

6.3 Physical Fidelity, Controllability & Generalizability

From the perspective of the generation capability, current
world models for autonomous driving are critically limited
by a failure to ensure physical realism, offer fine-grained
controllability, and achieve robust generalization [74], [93].
They often produce physically implausible events, such as
non-deforming collision impacts and objects that lack tempo-
ral consistency [47]. Furthermore, their editing capabilities
remain coarse, typically confined to adjusting traffic agents’
positions or appearances while neglecting granular control

over environmental elements like architecture or road signs.
Most critically, these models tend to overfit their training
data, failing to generalize to new urban environments and
rare objects, thus limiting their real-world applicability.
Future work must overcome these challenges to build more
faithful, controllable, and generalizable world models.

6.4 Computational Efficiency & Real-Time Performance
Another pressing limitation of current world models for
autonomous driving lies in computational efficiency and
real-time responsiveness. Existing methods often depend
on heavy architectures and multi-step sampling strategies,
leading to substantial latency and memory overhead, which
undermines their practicality for large-scale data generation
and simulation. Moving forward, research should prioritize
sparse computation [316] and inference acceleration tech-
niques [317] in order to enable world models that are both
accurate and responsive while remaining scalable.

6.5 Cross-Modal Generation Coherence
Current world models often struggle to achieve consistent
cross-modal generation, wherein visual, geometric, and
semantic modalities must jointly interact to form a coherent
representation of the environment. Misalignment can result
in generated imagery that conflicts with the underlying 3D
structure, undermining reliability in downstream perception
and planning tasks. Overcoming these issues requires inte-
grated architectures that jointly learn from diverse sensor
data while enforcing strict consistency constraints during
generation [77], [226]. Furthermore, ensuring fine-grained
spatial alignment and temporal synchronization is crucial
for accurately modeling the dynamic interactions in realistic
driving environments. Future research should target this
fundamental challenge to harmonize diverse data streams.

7 CONCLUSION

This survey has presented the first systematic review of
3D and 4D world modeling and generation, clarifying
definitions, organizing methods into a hierarchical taxonomy
across VideoGen, OccGen, and LiDARGen, and summarizing
datasets, evaluations, and applications. By shifting focus
from purely visual realism to geometry-grounded modeling,
native 3D and 4D representations enable models to achieve
plausibility, controllability, and physical consistency, serving
roles as data engines, action interpreters, neural simulators,
and scene reconstructors. Despite rapid progress, challenges
remain in scaling to real-world complexity, aligning multi-
modal signals, and establishing standardized evaluation for
controllability, safety, and generalization. Looking forward,
unifying generative and predictive paradigms, integrating
language and reasoning, and advancing simulation and
digital twin ecosystems represent promising directions.
Equally important will be community efforts in creating open
benchmarks, reproducible codebases, and large-scale datasets
tailored for 3D/4D world models, which can accelerate
progress and ensure comparability across methods. We
hope this survey provides both a coherent foundation and
a forward-looking roadmap for advancing robust, inter-
pretable, and generalizable world models to power the next
generation of embodied AI.
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TABLE 14: Summary of the evaluation metrics used for evaluating the quality of 1Generation, 2Forecasting, 3Planning,
4Reconstruction, and 5Downstream Tasks for the VideoGen, OccGen, and LiDARGen models in 2D, 3D, and 4D tasks.

Abbr. - Full Name Description Ref.

Generation Quality - Perceptual Fidelity

FID ↓ Fréchet Inception
Distance

Statistical distance between multivariate Gaussians fitted to Inception
features of real and generated samples, measuring distributional similarity. [246]

FVD ↓ Fréchet Video Distance Statistical distance between multivariate Gaussians fitted to I3D fea-
tures [318] of real and generated videos, capturing temporal coherence. [247]

FRD ↓ Fréchet Range Distance Statistical distance between Gaussians fitted to RangeNet++ features [319]
extracted from LiDAR range images, assessing distributional fidelity. [206]

FPD ↓ Fréchet Point Cloud
Distance

Statistical distance between Gaussians fitted to PointNet features [62] of
raw 3D point clouds, evaluating geometric realism. [248]

FSVD ↓ Fréchet Sparse Volume
Distance

Statistical distance between Gaussians fitted to volumetric encoder features
of sparse voxel inputs, capturing volumetric structure. [209]

FPVD ↓ Fréchet Point Volume
Distance

Statistical distance between Gaussians fitted to volumetric encoder features
of hybrid point–voxel representations, measuring fidelity. [209]

F3D ↓ Fréchet 3D Distance Statistical distance between Gaussians fitted to occupancy grid features,
evaluating volumetric realism in generated 3D data. [176]

S-FRD ↓ Semantic Fréchet Range
Distance

Class-aware extension of FRD that incorporates semantic labels for im-
proved alignment of LiDAR range distributions. [215]

S-FPD ↓ Semantic Fréchet Point
Distance

Class-aware extension of FPD that integrates semantic labels to assess
alignment of 3D point cloud distributions. [215]

KID ↓ Kernel Inception Distance Maximum Mean Discrepancy between Inception features using a polyno-
mial kernel, providing an unbiased distributional similarity measure. [320]

IS ↑ Inception Score Evaluates image realism by rewarding confident and diverse class predic-
tions from a pretrained Inception classifier, without real reference data. [249]

IQ ↑ Image Quality Predicts perceptual image quality by estimating human opinion scores
with a learned quality assessor [321], without ground truth references. [76]

Generation Quality - Statistical Fidelity

PR ↑ Precision-Recall Reports sample fidelity as precision and distributional coverage as recall,
characterizing closeness to the real data manifold. [18]

SWD ↓ Sliced Wasserstein
Distance

Mean Wasserstein distance over multiple random 1D projections of image
patches at different scales, reflecting distributional similarity. [212]

JSD ↓ Jensen–Shannon
Divergence

Symmetric divergence measuring similarity between occupancy his-
tograms of real and generated scenes, lower indicating better alignment. [205]

MMD ↓ Minimum Matching
Distance

Average Chamfer distance from each real sample to its nearest generated
neighbor, quantifying geometric fidelity. [205]

COV ↑ Coverage Fraction of real samples matched by at least one generated output,
measuring generative diversity and recall. [224]

1-NNA - 1-Nearest-Neighbor
Accuracy

Overlap test using a 1-NN classifier trained across sets, where accuracy
near 50% indicates distributional equivalence. [224]

Diversity ↑ - Degree of variability across generated outputs for fixed prompts, often
measured via pixel- or feature-wise variance. [91]

Generation Quality - Spatial Consistency

VCS ↑ View Consistency Score Summation of LoFTR keypoint confidences [322] across overlapping views,
evaluating multi-view geometric consistency and alignment quality. [72]

KPM ↑ Key Points Matching Ratio of successfully matched keypoints between adjacent generated and
real views, reflecting geometric alignment quality. [102]

DAS ↓ Depth Alignment Score Statistical discrepancy between projected point clouds and estimated
monocular depth [323], measuring scene-level depth consistency. [226]

Generation Quality - Temporal Consistency

CTC ↑ CLIP Temporal
Consistency

Cosine similarity of CLIP features [250] across consecutive frames, measur-
ing temporal stability and smoothness in generated video sequences. [76]

DTC ↑ DINO Temporal
Consistency

Cosine similarity of DINO features [251] across adjacent frames, evaluating
temporal coherence and smooth transitions in generated sequences. [76]

Note: Continued on next page
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Abbr. - Full Name Description Ref.

TTCE ↓ Temporal Transformation
Consistency Error

Registration error between temporally generated and ground-truth point
clouds, evaluating motion alignment and temporal consistency. [49]

CTC ↓ Chamfer Temporal
Consistency

Chamfer distance between generated point clouds across different times-
tamps, quantifying temporal stability and geometric coherence. [49]

ICP ↓ ICP Energy / Outlier Registration residuals and outlier ratios from Iterative Closest Point
alignment of LiDAR frames, detecting temporal jitter and misalignment. [227]

Generation Quality - Subject Consistency

SC ↑ Subject Consistency Cosine similarity of subject-region features [251] across frames, evaluating
identity persistence and stability in generated video sequences. [252]

FDC ↑ Foreground Detection
Confidence

Confidence scores of detected foreground objects in generated samples
using a pretrained detector, reflecting semantic plausibility and realism. [49]

CFCA ↑ Conditional Foreground
Classification Accuracy

Semantic consistency of generated objects evaluated by classification
accuracy with a pretrained object classifier, conditioned on ground truth. [49]

CFSC ↑ Conditional Foreground
Spatial Consistency

Mean IoU between 3D boxes regressed by a conditional VAE and ground
truth boxes, assessing geometric alignment under conditioning. [49]

Generation Quality - Controllability

CDA ↑ Conditional Detection
Accuracy

Standard detection accuracy from a pretrained 3D detector applied to
generated point clouds with box conditioning, measuring semantic fidelity. [49]

CLIP-Sim ↑ CLIP Similarity Average cosine similarity between CLIP embeddings of generated and
reference frames, reflecting semantic alignment across modalities. [86]

MAE ↓ Mean Absolute Error Difference in predicted versus reference object counts within scene graphs,
assessing accuracy of graph-level controllability. [193]

JI ↑ Jaccard Index Overlap ratio of predicted and reference category sets within scene graphs,
evaluating graph-level semantic consistency. [193]

RotErr ↓ Rotation Error Angular difference between recovered and target camera trajectories,
quantifying rotational alignment error. [129]

TransErr ↓ Translation Error Euclidean distance between recovered and target camera trajectories,
quantifying translational alignment error. [129]

Generation Quality - Human Preference

VQ ↑ Visual Quality (2AFC) Win rates for perceptual visual quality in two-alternative forced choice
comparisons, reflecting human-preferred realism of generations. [131]

MR ↑ Motion Rationality
(2AFC)

Win rates for perceived motion rationality in two-alternative forced choice
settings, evaluating naturalness of temporal dynamics. [131]

DMOS ↑ Differential Mean
Opinion Score

Average human-rated alignment with conditioning constraints (e.g., scene
graphs), providing a relative perceptual quality measure. [193]

Forecasting Quality - Spatial Predictive Accuracy

L1 Error ↓ Frame Mean Absolute
Error

Pixel- or depth-space L1 distance between predicted and ground-truth
frames, quantifying reconstruction fidelity and short-horizon accuracy. [106]

L2 Error ↓ Frame Mean Squared
Error

Pixel- or depth-space L2 distance between predicted and ground-truth
frames, reflecting average squared reconstruction deviation. [106]

IoUc ↑ IoU at Current Timestamp Intersection-over-Union between predicted and reference occupancy maps
at the current frame, assessing immediate prediction quality. [171]

IoUf ↑ IoU at Future Timestamp Intersection-over-Union between predicted and reference occupancy maps
at a fixed future horizon, capturing long-range prediction quality. [171]

IoUwf ↑ IoU at Weighted Future
Timestamp

Weighted average Intersection-over-Union across multiple future frames,
emphasizing near-term predictions for smoother accuracy assessment. [171]

CD ↓ Chamfer Distance Bidirectional nearest-neighbor distance between point clouds from ray-cast
predicted and ground-truth occupancy, measuring geometric fidelity. [19]

L1 Med ↓ Median L1 Depth Error Median absolute depth error along LiDAR rays after projection, robustly
quantifying accuracy against outliers. [19]

AbsRel
Med ↓ Median Absolute Relative

Error
Median of relative depth errors across all LiDAR rays, providing a scale-
aware and robust measure of accuracy. [19]

L1 Mean ↓ Mean L1 Depth Error Mean absolute depth error along projected LiDAR rays, reflecting average
deviation in meters from reference. [19]

Note: Continued on next page
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Abbr. - Full Name Description Ref.

AbsRel
Mean ↓ Mean Absolute Relative

Error
Mean of relative depth errors across all rays, capturing overall scale-
consistent accuracy of depth predictions. [19]

Forecasting Quality - Temporal Predictive Accuracy

KODP ↑ Key Object Dimension
Probability

Probability-based measure penalizing implausible object dimensions using
category priors, encouraging physically realistic and consistent generation. [194]

TFSC ↑ Temporal Foreground
Shape Consistency

Voxel-level Intersection-over-Union of dynamic object instances across
consecutive frames, ensuring shape persistence and temporal stability. [194]

TBEC ↑ Temporal Background
Environment Consistency

Consistency of static voxels under ego-motion compensation, validating
environmental rigidity and long-term background stability. [194]

Planning Quality - Open-Loop Planning

ADE ↓ Average Displacement
Error

Mean displacement error between predicted trajectories and expert way-
points across the horizon, reflecting overall trajectory accuracy. [96]

FDE ↓ Final Displacement Error Displacement error at the final predicted waypoint compared with expert
trajectories, emphasizing long-term accuracy. [96]

SLE ↓ Speed L1 Error Mean absolute error of predicted speed control signals. [101]

SALE ↓ Steer Angle L1 Error Mean absolute error of predicted steering angle control signals. [101]

CR ↓ Collision rate Fraction of rollouts in which the controlled vehicle collides with surround-
ing agents or obstacles, indicating safety risk. [102]

PDMS ↑ Predictive Driver Model
Score

Aggregate score combining progress, spacing, and comfort after discarding
unsafe rollouts, approximating human-like driving quality. [99]

EPDMS ↑ Extended Predictive
Driver Model Score

Extended version of PDMS that includes nine additional factors to reflect
rule adherence and recovery behaviors. [253]

AHE ↓ Average Heading Error Mean absolute angular deviation between predicted and expert heading
over the trajectory horizon, measuring orientation accuracy. [98]

FHE ↓ Final Heading Error Absolute angular deviation of predicted heading from expert at the final
timestep, reflecting terminal orientation accuracy. [98]

MR ↓ Miss Rate Fraction of prediction timesteps where displacement error exceeds horizon-
specific thresholds, reflecting failure in trajectory coverage. [98]

Planning Quality - Closed-Loop Planning

SR ↑ Success Rate Percentage of navigation episodes that successfully reach the goal within a
fixed time budget, indicating overall task completion. [100]

ID ↑ Infraction Distance Average driving distance between two infractions, with longer distances
reflecting safer and more reliable policy behavior. [100]

ADS ↑ Arena Driving Score Composite score combining route completion metrics with PDMS to
summarize closed-loop driving performance in Arena environments. [119]

NAC ↑ No At-Fault Collisions Fraction of scenarios without ego-fault collisions, focusing exclusively on
responsibility-aware collision evaluation. [98]

DAC ↑ Drivable-Area
Compliance

Boolean evaluation that checks whether the ego vehicle remains inside
drivable polygons throughout the rollout. [98]

DDC ↑ Driving-Direction
Compliance

Boolean evaluation verifying that ego motion remains aligned with the
designated lane’s legal driving direction. [98]

MP ↑ Making Progress Boolean check confirming that the ego vehicle makes sufficient forward
route progress within the evaluation horizon. [98]

TTC ↑ Time-to-Collision Boolean verification that the time-to-collision value exceeds safety thresh-
olds, preventing imminent crashes. [98]

PAR ↑ Progress Along Route Ratio of ego-vehicle progress compared to expert trajectory progress along
the same route, reflecting efficiency. [98]

SLC ↑ Speed-Limit Compliance Score penalizing magnitude and duration of speed-limit violations, higher
values indicating safer speed adherence. [98]

Comfort ↑ Driving Comfort Penalization of excessive jerk, acceleration, or yaw-rate, reflecting ride
quality and passenger comfort. [98]

Reconstruction Quality - Photometric Fidelity

PSNR ↑ Peak Signal-to-Noise
Ratio

Logarithmic ratio of maximum possible signal power to reconstruction
error, measuring pixel-level fidelity of generated images [258]

Note: Continued on next page
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Abbr. - Full Name Description Ref.

SSIM ↑ Structural Similarity
Index Measure

Quality index considering structural similarity, luminance consistency, and
contrast preservation between generated and reference images. [259]

LPIPS ↓ Learned Perceptual Image
Patch Similarity

Feature-space distance between deep network activations of image patches,
quantifying perceptual realism beyond pixel fidelity. [260]

Reconstruction Quality - View Changing Consistency

NTA-IoU ↑ Novel Trajectory Agent
IoU

Intersection-over-Union between projected 3D bounding boxes of fore-
ground agents and detected 2D boxes under novel viewpoints. [50]

NTL-IoU ↑ Novel Trajectory Lane
IoU

Intersection-over-Union between projected lane structures and detected
lane markings from novel viewpoints, evaluating background alignment. [50]

Downstream Evaluation - Detection

mAP ↑ Mean Average Precision Average precision computed over multiple IoU thresholds for 2D detection
boxes on standard benchmarks, reflecting detection accuracy. [261]

mAP-3D ↑ Mean Average Precision
in 3D

Average precision for 3D bounding boxes, integrating precision-recall
across multiple IoU thresholds in 3D space. [10]

LET-3D-
AP ↑

Average Precision with
Longitudinal Error

Tolerance

3D average precision using LET-IoU, allowing depth shifts along the
camera ray within a tolerance margin. [324]

LET-3D-
APL ↑ Longitudinal Affinity

Weighted LET-3D-AP
Weighted LET-3D-AP that penalizes larger longitudinal corrections, im-
proving realism in depth-sensitive evaluation. [324]

mATE ↓ Mean Average
Translation Error

Mean L2 distance between predicted and ground-truth object centers for
matched true positives, evaluating localization accuracy. [10]

mASE ↓ Mean Average Scale Error Mean scale discrepancy defined as one minus IoU for matched true
positives, reflecting object size accuracy. [10]

mAOE ↓ Mean Average
Orientation Error

Mean absolute yaw error of matched true positives, quantifying accuracy
of predicted object orientation. [10]

mAVE ↓ Mean Average Velocity
Error

Mean L2 difference between predicted and ground-truth object velocities
for matched true positives, measuring motion accuracy. [10]

mAAE ↓ Mean Average Attribute
Error

Mean error in predicting semantic attributes for matched true positives,
computed as one minus attribute accuracy. [10]

NDS ↑ nuScenes Detection Score Composite metric combining mAP with normalized true positive errors
(mATE, mASE, mAOE, mAVE, mAAE), reflecting holistic detection quality. [10]

Downstream Evaluation - Segmentation

mIoU ↑ Mean Intersection over
Union

Average Intersection-over-Union across all semantic classes in 2D images
or 3D point clouds, measuring segmentation accuracy. [325]

BEV-Map-
IoU ↑ Bird’s-Eye-View Map IoU Class-wise Intersection-over-Union for freespace, lane, and dynamic agents

in BEV compared with HD maps, evaluating scene consistency. [326]

Downstream Evaluation - Tracking

MOTA ↑ Multi-Object Tracking
Accuracy

Composite metric aggregating false positives, false negatives, and identity
switches into a single score, evaluating overall tracking reliability. [262]

MOTP ↑ Multi-Object Tracking
Precision

Mean Intersection-over-Union between matched predictions and ground
truth across frames, quantifying spatial localization precision. [262]

3D-
AMOTA ↑ Average Multi-Object

Tracking Accuracy in 3D
3D extension of MOTA averaged across recall thresholds, reducing sensi-
tivity to threshold choices while evaluating tracking accuracy. [327]

3D-
AMOTP ↑ Average Multi-Object

Tracking Precision in 3D
3D extension of MOTP averaging localization precision (IoU or center
distance) over recall thresholds, reflecting robustness. [327]

Downstream Evaluation - Occupancy Prediction

Occupancy-
IoU ↑ Occupancy Intersection

over Union
Intersection-over-Union between predicted and labeled voxel occupancies
at class- or scene-level granularity, reflecting occupancy accuracy. [328]

VPQ ↑ Voxelized Panoptic
Quality

Panoptic quality metric for voxelized outputs, combining semantic seg-
mentation accuracy with instance detection recall into a unified score. [171]

Downstream Evaluation - VQA

Top-1 Acc ↑
Visual Question

Answering Top-1
Accuracy

Exact-match accuracy of predicted answers across diverse question cate-
gories in autonomous driving VQA tasks, measuring reasoning reliability. [181]
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fields for urban areas,” in Adv. Neural Inf. Process. Syst., vol. 37,
2024, pp. 80 466–80 494.

[140] N. Huang et al., “S3Gaussian: Self-supervised street Gaussians for
autonomous driving,” arXiv preprint arXiv:2405.20323, 2024.

[141] H. Li, J. Li, D. Zhang et al., “VDG: Vision-only dynamic Gaussian
for driving simulation,” arXiv preprint arXiv:2406.18198, 2024.

[142] Y. Ren et al., “UniGaussian: Driving scene reconstruction from
multiple camera models via unified Gaussian representations,”
arXiv preprint arXiv:2411.15355, 2024.

[143] Z. Yu, H. Wang, J. Yang et al., “SGD: Street view synthesis with
Gaussian splatting and diffusion prior,” in IEEE/CVF Winter Conf.
Appl. Comput. Vis., 2025, pp. 3812–3822.

[144] C. Peng, C. Zhang, Y. Wang et al., “DeSiRe-GS: 4D street Gaussians
for static-dynamic decomposition and surface reconstruction for
urban driving scenes,” in IEEE/CVF Conf. Comput. Vis. Pattern
Recog., 2025, pp. 6782–6791.

[145] L. Fan, H. Zhang, Q. Wang et al., “FreeSim: Toward free-viewpoint
camera simulation in driving scenes,” in IEEE/CVF Conf. Comput.
Vis. Pattern Recog., 2025, pp. 12 004–12 014.

[146] J. Zhou et al., “FlexDrive: Toward trajectory flexibility in driving
scene reconstruction and rendering,” in IEEE/CVF Conf. Comput.
Vis. Pattern Recog., 2025.

[147] Y. Chen, J. Zhang, Z. Xie et al., “S-NeRF++: Autonomous driving
simulation via neural reconstruction and generation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 47, no. 6, pp. 4358–4376, 2025.

[148] J. Mao, B. Li, B. Ivanovic et al., “DreamDrive: Generative
4D scene modeling from street view images,” arXiv preprint
arXiv:2501.00601, 2025.

[149] Y. Zou et al., “MuDG: Taming multi-modal diffusion with Gaus-
sian splatting for urban scene reconstruction,” arXiv preprint
arXiv:2503.10604, 2025.

[150] J. Ge et al., “Unraveling the effects of synthetic data on end-to-end
autonomous driving,” arXiv preprint arXiv:2503.18108, 2025.

[151] J. Jiang et al., “RealEngine: Simulating autonomous driving in
realistic context,” arXiv preprint arXiv:2505.16902, 2025.

[152] X. Zhang et al., “AccidentSim: Generating physically realistic
vehicle collision videos from real-world accident reports,” arXiv
preprint arXiv:2503.20654, 2025.

[153] S. Mo et al., “Dreamland: Controllable world creation with
simulator and generative models,” arXiv preprint arXiv:2506.08006,
2025.

[154] Y. Yan, H. Lin, C. Zhou et al., “Street Gaussians: Modeling dynamic
urban scenes with gaussian splatting,” in Eur. Conf. Comput. Vis.
Springer, 2024, pp. 156–173.

[155] H. Zhou et al., “HUGSIM: A real-time, photo-realistic and
closed-loop simulator for autonomous driving,” arXiv preprint
arXiv:2412.01718, 2024.

[156] Z. Yuan et al., “Uni-Gaussians: Unifying camera and LiDAR
simulation with Gaussians for dynamic driving scenarios,” arXiv
preprint arXiv:2503.08317, 2025.

[157] Z. Chen, J. Yang, J. Huang et al., “OmniRe: Omni urban scene
reconstruction,” in Int. Conf. Learn. Represent., 2025.

[158] H. Lu et al., “DrivingRecon: Large 4D Gaussian reconstruction
model for autonomous driving,” arXiv preprint arXiv:2412.09043,
2024.

[159] C. Ni, G. Zhao, X. Wang et al., “ReconDreamer: Crafting world
models for driving scene reconstruction via online restoration,” in
IEEE/CVF Conf. Comput. Vis. Pattern Recog., 2025, pp. 1559–1569.

[160] L. Wang et al., “Stag-1: Towards realistic 4D driving simulation
with video generation model,” arXiv preprint arXiv:2412.05280,
2024.

[161] G. Zhao et al., “ReconDreamer++: Harmonizing generative and
reconstructive models for driving scene representation,” arXiv
preprint arXiv:2503.18438, 2025.

[162] Y. Yan, Z. Xu, H. Lin et al., “StreetCrafter: Street view synthesis
with controllable video diffusion models,” in IEEE/CVF Conf.
Comput. Vis. Pattern Recog., 2025, pp. 822–832.

[163] J. Wilson, J. Song, Y. Fu et al., “MotionSC: Data set and network
for real-time semantic mapping in dynamic environments,” IEEE
Robot. Autom. Lett., vol. 7, no. 3, pp. 8439–8446, 2022.

[164] J. Houston, G. Zuidhof, L. Bergamini et al., “One thousand and
one hours: Self-driving motion prediction dataset,” in Conf. Robot
Learn. PMLR, 2021, pp. 409–418.



32

[165] Y. Liao, J. Xie, and A. Geiger, “KITTI-360: A novel dataset and
benchmarks for urban scene understanding in 2D and 3D,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 45, no. 3, pp. 3292–3310, 2022.

[166] R. Xu et al., “OPV2V: An open benchmark dataset and fusion
pipeline for perception with vehicle-to-vehicle communication,”
in IEEE Int. Conf. Robot. Autom., 2022, pp. 2583–2589.

[167] T. Khurana, P. Hu, A. Dave et al., “Differentiable raycasting for
self-supervised occupancy forecasting,” in Eur. Conf. Comput. Vis.
Springer, 2022, pp. 353–369.

[168] J. Lee, W. Im, S. Lee, and S.-E. Yoong, “Diffusion probabilis-
tic models for scene-scale 3D categorical data,” arXiv preprint
arXiv:2301.00527, 2023.

[169] C. Min et al., “UniWorld: Autonomous driving pre-training via
world models,” arXiv preprint arXiv:2308.07234, 2023.

[170] C. Min, L. Xiao, D. Zhao et al., “Multi-camera unified pre-training
via 3D scene reconstruction,” IEEE Robot. Autom. Lett., vol. 9, no. 4,
pp. 3243–3250, 2024.

[171] J. Ma et al., “Cam4DOcc: Benchmark for camera-only 4D oc-
cupancy forecasting in autonomous driving applications,” in
IEEE/CVF Conf. Comput. Vis. Pattern Recog., 2024, pp. 21 486–21 495.

[172] X. Ren, J. Huang, X. Zeng et al., “XCube: Large-scale 3D generative
modeling using sparse voxel hierarchies,” in IEEE/CVF Conf.
Comput. Vis. Pattern Recog., 2024, pp. 4209–4219.

[173] J. Lee, S. Lee, C. Jo et al., “SemCity: Semantic scene generation
with triplane diffusion,” in IEEE/CVF Conf. Comput. Vis. Pattern
Recog., 2024, pp. 28 337–28 347.

[174] C. Min, D. Zhao, L. Xiao et al., “DriveWorld: 4D pre-trained scene
understanding via world models for autonomous driving,” in
IEEE/CVF Conf. Comput. Vis. Pattern Recog., 2024, pp. 15 522–15 533.

[175] B. Agro, Q. Sykora, S. Casas et al., “UnO: Unsupervised occupancy
fields for perception and forecasting,” in IEEE/CVF Conf. Comput.
Vis. Pattern Recog., 2024, pp. 14 487–14 496.

[176] Y. Liu, X. Li, X. Li et al., “Pyramid diffusion for fine 3D large scene
generation,” in Eur. Conf. Comput. Vis. Springer, 2024, pp. 71–87.

[177] W. Zheng, W. Chen, Y. Huang et al., “OccWorld: Learning a 3D
occupancy world model for autonomous driving,” in Eur. Conf.
Comput. Vis. Springer, 2024, pp. 55–72.

[178] J. Zhang, Q. Zhang, L. Zhang et al., “Urban scene diffusion through
semantic occupancy map,” arXiv preprint arXiv:2403.11697, 2024.

[179] L. Wang, W. Zheng, Y. Ren et al., “OccSora: 4D occupancy
generation models as world simulators for autonomous driving,”
arXiv preprint arXiv:2405.20337, 2024.

[180] B. Lange and otherss, “Self-supervised multi-future occu-
pancy forecasting for autonomous driving,” arXiv preprint
arXiv:2407.21126, 2024.

[181] J. Wei, S. Yuan, P. Li et al., “OccLLaMA: An occupancy-language-
action generative world model for autonomous driving,” arXiv
preprint arXiv:2409.03272, 2024.

[182] E. Guo et al., “FSF-Net: Enhance 4D occupancy forecasting with
coarse BEV scene flow for autonomous driving,” arXiv preprint
arXiv:2409.15841, 2024.

[183] S. Gu, W. Yin, B. Jin et al., “DOME: Taming diffusion model into
high-fidelity controllable occupancy world model,” arXiv preprint
arXiv:2410.10429, 2024.

[184] W. Zheng et al., “GaussianAD: Gaussian-centric end-to-end au-
tonomous driving,” arXiv preprint arXiv:2412.10371, 2024.

[185] H. Zhang, Y. Xue, X. Yan et al., “An efficient occupancy world
model via decoupled dynamic flow and image-assisted training,”
arXiv preprint arXiv:2412.13772, 2024.

[186] Y. Yang, J. Mei, Y. Ma et al., “Driving in the occupancy world:
Vision-centric 4D occupancy forecasting and planning via world
models for autonomous driving,” in AAAI Conf. Artifi. Intell.,
vol. 39, 2025, pp. 9327–9335.

[187] X. Li et al., “Semi-supervised vision-centric 3D occupancy world
model for autonomous driving,” arXiv preprint arXiv:2502.07309,
2025.

[188] J. Chen et al., “OccProphet: Pushing efficiency frontier of camera-
only 4D occupancy forecasting with observer-forecaster-refiner
framework,” arXiv preprint arXiv:2502.15180, 2025.

[189] Z. Yan, W. Dong, Y. Shao et al., “RenderWorld: World model with
self-supervised 3D label,” arXiv preprint arXiv:2409.11356, 2024.

[190] T. Xu, H. Lu, X. Yan et al., “Occ-LLM: Enhancing autonomous
driving with occupancy-based large language models,” in IEEE
Int. Conf. Robot. Autom., 2025.

[191] J. Xu, X. Chen, J. Ma et al., “Spatiotemporal decoupling for efficient
vision-based occupancy forecasting,” in IEEE/CVF Conf. Comput.
Vis. Pattern Recog., 2025, pp. 22 338–22 347.

[192] C. Diehl, Q. Sykora, B. Agro et al., “DIO: Decomposable implicit
4D occupancy-flow world model,” in IEEE/CVF Conf. Comput. Vis.
Pattern Recog., 2025, pp. 27 456–27 466.

[193] Y. Liu et al., “Controllable 3D outdoor scene generation via scene
graphs,” arXiv preprint arXiv:2503.07152, 2025.

[194] Y. Wang et al., “UniOcc: A unified benchmark for occupancy
forecasting and prediction in autonomous driving,” arXiv preprint
arXiv:2503.24381, 2025.

[195] Z. Liao, P. Wei, R. Zhang et al., “I2-World: Intra-inter tokeniza-
tion for efficient dynamic 4D scene forecasting,” arXiv preprint
arXiv:2507.09144, 2025.

[196] H. Xu et al., “Temporal triplane transformers as occupancy world
models,” arXiv preprint arXiv:2503.07338, 2025.

[197] Y. Shi, K. Jiang, Q. Meng et al., “COME: Adding scene-centric
forecasting control to occupancy world model,” arXiv preprint
arXiv:2506.13260, 2025.

[198] Y. Yang, A. Liang, J. Mei et al., “X-Scene: Large-scale driving scene
generation with high fidelity and flexible controllability,” arXiv
preprint arXiv:2506.13558, 2025.

[199] C. O. Tze, D. Dauner, Y. Liao et al., “PrITTI: Primitive-based
generation of controllable and editable 3D semantic scenes,” arXiv
preprint arXiv:2506.19117, 2025.

[200] J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. Van Den Berg,
“Structured denoising diffusion models in discrete state-spaces,”
Adv. Neural Inf. Process. Syst., vol. 34, pp. 17 981–17 993, 2021.

[201] L. Kong, Y. Liu, R. Chen et al., “Rethinking range view representa-
tion for lidar segmentation,” in IEEE/CVF Int. Conf. Comput. Vis.,
2023, pp. 228–240.

[202] A. Liang, L. Kong, D. Lu et al., “Perspective-invariant 3d object
detection,” in IEEE/CVF Int. Conf. Comput. Vis., 2025.

[203] K. Nakashima and R. Kurazumeg, “Learning to drop points for
LiDAR scan synthesis,” in IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2021, pp. 222–229.

[204] K. Nakashima, Y. Iwashita, and R. Kurazume, “Generative range
imaging for learning scene priors of 3D LiDAR data,” in IEEE/CVF
Winter Conf. Appl. Comput. Vis., 2023, pp. 1256–1266.

[205] V. Zyrianov et al., “Learning to generate realistic LiDAR point
clouds,” in Eur. Conf. Comput. Vis. Springer, 2022, pp. 17–35.

[206] K. Nakashima and R. Kurazume, “LiDAR data synthesis with
denoising diffusion probabilistic models,” in IEEE Int. Conf. Robot.
Autom., 2024, pp. 14 724–1473.

[207] Y. Lipman et al., “Flow matching for generative modeling,” arXiv
preprint arXiv:2210.02747, 2022.

[208] K. Nakashima et al., “Fast LiDAR data generation with rectified
flows,” in IEEE Int. Conf. Robot. Autom., 2025.

[209] H. Ran, V. Guizilini, and Y. Wang, “Towards realistic scene
generation with LiDAR diffusion models,” in IEEE/CVF Conf.
Comput. Vis. Pattern Recog., 2024, pp. 14 738–14 748.

[210] Q. Hu et al., “RangeLDM: Fast realistic LiDAR point cloud
generation,” in Eur. Conf. Comput. Vis. Springer, 2024, pp. 115–135.

[211] L. Nunes et al., “Towards generating realistic 3D semantic training
data for autonomous driving,” arXiv preprint arXiv:2503.21449,
2025.

[212] H. Haghighi et al., “Taming transformers for realistic LiDAR point
cloud generation,” arXiv preprint arXiv:2404.05505, 2024.

[213] A. Van Den Oord et al., “Neural discrete representation learning,”
in Adv. Neural Inf. Process. Syst., vol. 30, 2017, pp. 6309–6318.

[214] R. Faulkner et al., “Simultaneous diffusion sampling for condi-
tional LiDAR generation,” arXiv preprint arXiv:2410.11628, 2024.

[215] D. Zhu, Y. Hu, Y. Liu et al., “SPIRAL: Semantic-aware progressive
LiDAR scene generation,” arXiv preprint arXiv:2505.22643, 2025.

[216] Y. Liu, L. Kong, W. Yang et al., “Veila: Panoramic LiDAR generation
from a monocular RGB image,” arXiv preprint arXiv:2508.03690,
2025.

[217] P. Xiao, Z. Shao, S. Hao et al., “PandaSet: Advanced sensor suite
dataset for autonomous driving,” in IEEE Int. Conf. Intell. Transport.
Syst., 2021, pp. 3095–3101.

[218] M. Bijelic et al., “Seeing through fog without seeing fog: Deep mul-
timodal sensor fusion in unseen adverse weather,” in IEEE/CVF
Conf. Comput. Vis. Pattern Recog., 2020, pp. 11 682–11 692.

[219] S. Wang, Z. Yu, X. Jiang et al., “OmniDrive: A holistic LLM-agent
framework for autonomous driving with 3D perception, reasoning,
and planning,” in IEEE/CVF Conf. Comput. Vis. Pattern Recog., 2025,
pp. 22 442–22 452.

[220] Y. Xiong et al., “UltraLiDAR: Learning compact representations for
LiDAR completion and generation,” in IEEE/CVF Conf. Comput.
Vis. Pattern Recog., 2023, pp. 1074–1083.



33

[221] Z. Yang et al., “Visual point cloud forecasting enables scalable
autonomous driving,” in IEEE/CVF Conf. Comput. Vis. Pattern
Recog., 2024, pp. 14 673–14 684.

[222] L. Nunes et al., “Scaling diffusion models to real-world 3D LiDAR
scene completion,” in IEEE/CVF Conf. Comput. Vis. Pattern Recog.,
2024, pp. 14 770–14 780.

[223] Y. Wu et al., “Text2LiDAR: Text-fuided LiDAR point cloud
generation via equirectangular transformer,” in Eur. Conf. Comput.
Vis. Springer, 2024, pp. 291–310.

[224] E. Kirby et al., “LOGen: Toward LiDAR object generation by point
diffusion,” arXiv preprint arXiv:2412.07385, 2024.

[225] T. Yan et al., “OLiDM: Object-aware LiDAR diffusion models for
autonomous driving,” in AAAI Conf. Artifi. Intell., vol. 39, 2025,
pp. 9121–9129.

[226] Y. Xie, C. Xu, C. Peng et al., “X-Drive: Cross-modality consistent
multi-sensor data synthesis for driving scenarios,” in Int. Conf.
Learn. Represent., 2025.

[227] V. Zyrianov et al., “LidarDM: Generative LiDAR simulation in a
generated world,” arXiv preprint arXiv:2404.02903, 2024.

[228] S.-H. Ho, B. Thach, and M. Zhu, “LiDAR-EDIT: LiDAR data
generation by editing the object layouts in real-world scenes,” in
IEEE Int. Conf. Robot. Autom., 2025.

[229] Y. Wu et al., “WeatherGen: A unified diverse weather generator for
LiDAR point clouds via spider mamba diffusion,” in IEEE/CVF
Conf. Comput. Vis. Pattern Recog., 2025, pp. 17 019–17 028.

[230] T. Martyniuk et al., “LiDPM: Rethinking point diffusion for LiDAR
scene completion,” in IEEE Intell. Veh. Symp., 2025.

[231] H. Cao and S. Behnke, “DiffSSC: Semantic LiDAR scan completion
using denoising diffusion probabilistic models,” arXiv preprint
arXiv:2409.18092, 2024.

[232] X. Zhou, D. Liang, S. Tu et al., “HERMES: A unified self-driving
world model for simultaneous 3D scene understanding and
generation,” in IEEE/CVF Int. Conf. Comput. Vis., 2025.

[233] Y. Du et al., “SuperPC: A single diffusion model for point cloud
completion, upsampling, denoising, and colorization,” arXiv
preprint arXiv:2503.14558, 2025.

[234] A. Zhao et al., “Diffusion distillation with direct preference
optimization for efficient 3D LiDAR scene completion,” arXiv
preprint arXiv:2504.11447, 2025.

[235] C. Shi et al., “DriveX: Omni scene modeling for learning general-
izable world knowledge in autonomous driving,” arXiv preprint
arXiv:2505.19239, 2025.

[236] SenseTime-FVG, “Open driving world models (OpenDWM),”
https://github.com/SenseTime-FVG/OpenDWM, 2025.

[237] Z. Chen et al., “AnchorFormer: Point cloud completion from
discriminative nodes,” in IEEE/CVF Conf. Comput. Vis. Pattern
Recog., 2023, pp. 13 581–13 590.

[238] B. Poole et al., “DreamFusion: Text-to-3D using 2D diffusion,”
arXiv preprint arXiv:2209.14988, 2022.

[239] B. Wallace, M. Dang, R. Rafailov et al., “Diffusion model alignment
using direct preference optimization,” in IEEE/CVF Conf. Comput.
Vis. Pattern Recog., 2024, pp. 8228–8238.

[240] H. Chang, H. Zhang, L. Jiang et al., “MaskGIT: Masked generative
image transformer,” in IEEE/CVF Conf. Comput. Vis. Pattern Recog.,
2022, pp. 11 315–11 325.

[241] Y. Cabon, N. Murray, and M. Humenberger, “Virtual KITTI 2,”
arXiv preprint arXiv:2001.10773, 2020.

[242] X. Wang, Z. Zhu, W. Xu et al., “OpenOccupancy: A large-scale
benchmark for surrounding semantic occupancy perception,” in
IEEE/CVF Int. Conf. Comput. Vis., 2023, pp. 17 850–17 859.

[243] Y. Li, S. Li, X. Liu et al., “SSCBench: A large-scale 3D semantic scene
completion benchmark for autonomous driving,” in IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2024.

[244] Y. Wang et al., “DrivingDojo dataset: Advancing interactive
and knowledge-enriched driving world model,” arXiv preprint
arXiv:2410.10738, 2024.

[245] X. Han, Z. Jia, B. Li et al., “Extrapolated urban view synthesis
benchmark,” arXiv preprint arXiv:2412.05256, 2024.

[246] M. Heusel, H. Ramsauer, T. Unterthiner et al., “GANs trained by a
two-time-scale update rule converge to a local Nash equilibrium,”
Adv. Neural Inf. Process. Syst., vol. 30, 2017.

[247] T. Unterthiner et al., “Towards accurate generative models of video:
A new metric & challenges,” arXiv preprint arXiv:1812.01717, 2018.

[248] D. W. Shu, S. W. Park, and J. Kwon, “3D point cloud generative
adversarial network based on tree structured graph convolutions,”
in IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 3859–3868.

[249] T. Salimans et al., “Improved techniques for training GANs,” Adv.
Neural Inf. Process. Syst., vol. 29, 2016.

[250] A. Radford, J. W. Kim, C. Hallacy et al., “Learning transferable
visual models from natural language supervision,” in Int. Conf.
Mach. Learn. PMLR, 2021, pp. 8748–8763.

[251] M. Oquab et al., “DINOv2: Learning robust visual features without
supervision,” arXiv preprint arXiv:2304.07193, 2023.

[252] Z. Huang, Y. He, J. Yu et al., “VBench: Comprehensive benchmark
suite for video generative models,” in IEEE/CVF Conf. Comput. Vis.
Pattern Recog., 2024, pp. 21 807–21 818.

[253] W. Cao et al., “Pseudo-simulation for autonomous driving,” arXiv
preprint arXiv:2506.04218, 2025.

[254] Y. Hu, J. Yang, L. Chen et al., “Planning-oriented autonomous
driving,” in IEEE/CVF Conf. Comput. Vis. Pattern Recog., 2023, pp.
17 853–17 862.

[255] Z. Liu, H. Tang, A. Amini, X. Yang, H. Mao, D. Rus, and S. Han,
“BEVFusion: Multi-task multi-sensor fusion with unified bird’s-eye
view representation,” in IEEE Int. Conf. Robot. Autom., 2023, pp.
2774–2781.

[256] S. Wang, Y. Liu, T. Wang et al., “Exploring object-centric tem-
poral modeling for efficient multi-view 3D object detection,” in
IEEE/CVF Int. Conf. Comput. Vis., 2023, pp. 3621–3631.
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